Титульная страница
ISO 9000 ISO 14000
GMP Consulting
 

Стандарты и методологии моделирования      

Геннадий Верников

Стандарт MRPII. Концепция и основные принципы работы систем, поддерживающих этот стандарт

    Оглавление

    Введение

    Состав систем класса MRPII

    Механизм работы MRPII-системы

    Планирование потребностей в материалах

    Планирование потребностей в производственных мощностях

    Эволюция стандартов планирования

    Заключение

Часть 1. Обзор основных принципов работы систем класса MRPII

Введение

В конце 60-х годов, в связи с бурным развитием вычислительной техники, ее возможности перестали быть востребуемыми только отдельными наукоёмкими отраслями, компьютерные системы прочно входили в повседневную деловую жизнь. Повсюду начались активные попытки оптимальной автоматизации и информатизации бизнеса, создавались новые концепции управления и совершенствовались уже существующие. Основными целями автоматизации производственных компаний являлись: точный расчет актуальной себестоимости продукции, ее анализ, понижение затрат в процессе производства и повышение производительности в целом, благодаря эффективному планированию производственных мощностей и ресурсов. Результатом оптимизации этих параметров являлись понижение конечной цены готовых изделий и повышение общей производительности, что соответственно немедленно отражалось на конкурентноспособности и рентабельности компании. В результате поиска решений в области автоматизации производственных систем родилась парадигма планирования потребностей в материалах (MRP). По сути, MRP-методология представляет собой алгоритм оптимального управления заказами на готовую продукцию, производством и запасами сырья и материалов, реализуемый с помощью компьютерной системы. Другими словами, MRP система позволяла оптимально загружать производственные мощности, и при этом закупать именно столько материалов и сырья, сколько необходимо для выполнения текущего плана заказов и именно столько, сколько возможно обработать за соответствующий цикл производства. Тем самым планирование текущей потребности в материалах позволяло разгрузить склады как и сырья и комплектующих (сырье и комплектующие закупались ровно в том объеме, который можно обработать за один производственный цикл и поступались прямо в производственные цеха), так и склады готовой продукции (производство шло в строгом соответствии с принятым планом заказов, и продукция, относящаяся к текущему заказу, должна быть произведена ровно к сроку его исполнения (отгрузки)). Собственно методология MRP является реализацией двух известных принципов JIT (Just In Time - Вовремя заказать) и KanBan (Вовремя произвести). Разумеется, идеальная реализация концепции MRP невыполнима в реальной жизни. Например, из-за возможности срыва сроков поставок по различным причинам и последующей остановки производства в результате этого. Поэтому в жизненных реализациях MRP-систем на каждый случай предусмотрен заранее определенный страховой запас сырья и комплектующих (safety stock), объем которого определяется компетентным руководством компании.

После появления концепции MRP, казалось бы, все основные проблемы производства были решены, активно создавались и продавались компьютерные программы, реализующие ее нехитрые принципы. Однако в процессе дальнейшего анализа существующей ситуации в мировом бизнесе и ее развития, выяснилось, что всю большую составляющую себестоимости продукции занимают затраты, напрямую не связанные с процессом и объемом производства. В связи с растущей от года к году конкуренцией, конечные потребители продукции становятся все более "избалованными", ощутимо увеличиваются затраты на рекламу и маркетинг, уменьшается жизненный цикл изделий. Всё это требует пересмотрения взглядов на планирование коммерческой деятельности. Отныне нужно не "что-то производить и стараться потом продать", а "стараться производить, то, что продается". Таким образом, маркетинг и планирование продаж должны быть непосредственно связаны с планированием производства. Исходя из этих предпосылок, и зародилась новая концепция корпоративного планиров ания. Кон цепция MRPII.

Состав систем класса MRPII (Manufacturing Resource Planning)

Очевидно, на любом производственном предприятии существует набор стандартных принципов планирования, контроля и управления функциональными элементами. Такими элементами являются производственные цеха, функциональные отделы, аппарат руководства и т.д. Давайте на основании этих принципов, попытаемся создать замкнутую логическую систему, которая позволяет отвечать на следующие тривиальные вопросы:

·         Что мы собираемся производить?

·         Что для этого нужно?

·         Что мы имеем в данный момент?

·         Что мы должны получить в итоге?

Эти, на первый взгляд простые вопросы всегда должны иметь ясные ответы для руководящего состава любого коммерческого (производственного и непроизводственного) предприятия. Одной из основ эффективной деятельности любого предприятия является правильно поставленная система планирования. Собственно, она и призвана содействовать ответам на эти вопросы.

Эта система планирования должна чётко отвечать на вопрос: "Что нам конкретно нужно в тот или иной момент времени в будущем?". Для этого она должна планировать потребности в материале, производственные мощности, финансовые потоки, складские помещения и т.д., принимая во внимание текущий план производства продукции (или услуг - здесь и далее) на предприятии. Назовем такую систему системой планирования ресурсов предприятия, или же MRPII-системой (Manufacturing Resource Planning System. Окончание аббревиатуры - римская цифра "II" не несет никакого лексического смысла, впрочем, ниже мы объясним историю возникновения этого окончания)

Таким образом, MRPII-система должна состоять из следующих функциональных модулей:

1.                   Планирование развития бизнеса (Составление и корректировка бизнес-плана)

2.                   Планирование деятельности предприятия

3.                   Планирование продаж

4.                   Планирование потребностей в сырье и материалах

5.                   Планирование производственных мощностей

6.                   Планирование закупок

7.                   Выполнение плана производственных мощностей

8.                   Выполнение плана потребности в материалах

9.                   Осуществление обратной связи

Схематический план работы MRPII-системы можно отобразить следующей диаграммой:

Рисунок 1. Схематический план работы MRPII-системы

Дата
(конец месяца)

План продаж

План производства (MPS)

Объем запасов

31.03

По плану

   

60

Реальный

30.04

По плану

30

35

65

Реальный

25

36

71

...

30.6

По плану

30

35

75

Реальный

     

Рисунок 2: План деятельности предприятия

 

Далее, на рисунке 4, показан типичный бизнес-план, который, по сути, является отображением плана деятельности, только в финансовом эквиваленте.

Дата
(конец месяца)

План продаж

План производства
(MPS)

Объём запасов

31.3

По плану

   

6000

Реально

30.4

По плану

3000

3500

6500

Реально

2500

3600

7100

31.5

По плану

3000

3500

7000

Реально

3800

3200

6500

30.6

По плану

3000

3500

7500

Реально

3200

3700

7000

...

...

...

...

...

31.12

По плану

3000

3500

10500

Реально

     

Рисунок 3. Бизнес-План

 

Полный бизнес-план на производственном предприятии, разумеется, включает в себя затраты на новые разработки и развитие, а также ряд других затрат, напрямую не связанных с производством и продажами, но нам для начала достаточно рассмотреть его облегченный вариант. С точки зрения MRPII-системы, план деятельности и бизнес-план не являются независимыми, и каждый раз, при обновлении плана деятельности, вносятся изменения и в бизнес-план. На основании главной программы производства ("Что мы собираемся производить?"), MRPII-система составляет инвентарный список (Bill of materials file) материалов-комплектующих("Что для этого нужно?") и, сравнивая его с инвентарными запасами имеющимися в наличие (на складе или в позициях активных заказов - "Что мы имеем в данный момент?"), определяет потребность в материалах ("Что мы должны приобрести?").

Следующий список представляет собой пример инвентарного списка комплектующих для простого автомобильного двигателя:

Инвентарный номер

Наименование материалов-комплектующих

Кол-во

789887

Блок цилиндров

1

678767

Коленчатый вал

1

678776

Поршень в сборе

4

787987

Поршень

4

789877

Кольцо поршневое

4

...........

.........................

................

............

.............

...

567765

Свеча зажигания

4

Рисунок 4. Пример инвентарного списка материалов-комплектующих

 

Такой инвентарный список обычно называется списком с отступом. Это означает тот факт, что элементы списка высшего уровня (комплектующие высшего порядка) располагаются левее, чем их составляющие - комплектующие более низкого порядка. На основании инвентарных списков происходит планирование потребностей в материалах.

Планирование потребностей в материалах (MRP - Materials Requirements Planning)

Модуль планирования потребностей в материалах (MRP - Materials Requirements Planning) исторически является тем самым зерном, из которого выросла концепция MRPII (Manufacturing Resources Planning, Римская цифра "II" появилась на конце ввиду аналогичности аббревиатур с MRP). Цель этого модуля - так спланировать поставку всех комплектующих, чтобы исключить простои производства и минимизировать запасы на складе. Уменьшение запасов материалов-комплектующих, кроме очевидной разгрузки складов и уменьшения затрат на хранение дает ряд неоспоримых преимуществ, главное из которых - минимизация замороженных средств, вложенных в закупку материалов, не сразу идущих на конвеер, а подолгу дожидающихся своей участи.

Входными элементами MRP-модуля являются:

·                     Описание состояния материалов (Inventory Status File)

Этот элемент является основным входным элементом MRP-модуля. В нем должна быть отражена максимально полная информация о всех типах сырья и материалах-комплектующих, необходимых для производства конечного продукта. В этом элементе должен быть указан статус каждого материала, определяющий, имеется ли он на руках, на складе, в текущих заказах или его заказ только планируется, а также описания, его запасов, расположения, цены, возможных задержек поставок, реквизитов поставщиков. Информация по всем вышеперечисленным позициям должна быть заложена отдельно по каждому материалу, участвующему в производственном процессе.

·                     Программа производства (Master Production Schedule)

Этот элемент представляет собой оптимизированный график распределения времени для производства необходимой партии готовой продукции за планируемый период или диапазон периодов.

·                     Перечень составляющих конечного продукта (Bills of Material File)

Этот элемент представляет собой список материалов и их количество, требуемое для производства конечного продукта. Таким образом, каждый конечный продукт имеет свой перечень составляющих. Кроме того, здесь содержится описание структуры конечного продукта, т.е. он содержит в себе полную информацию по последовательности его сборки. Чрезвычайно важно поддерживать точность всех записей в этом элементе и соответственно корректировать их всякий раз при внесении изменений в структуру и\или технологию производства конечного продукта.

Принцип работы MRP-модуля состоит в следущем:

1.                   Для каждого отрезка времени (обычно таким отрезком являются неделя или сутки) в течение всего периода планирования на основании инвентарных списков, плана производства и текущих запасов на складе создаётся полная потребность в материалах. Она представляет собой интегрированную таблицу, выражающую потребность в каждом материале, (суть элементе списка) в каждый конкретный момент времени.

2.                   Далее вычисляется чистая потребность. Это делается путем вычитания из полной потребности тех материалов-комплектующих, которые имеются в текущих запасах или занесены, в качестве позиций, в активные заказы. Другими словами, чистая потребность определяет: какое количество материалов нужно заказать (или произвести, в случае внутреннего производства комплектующих) в каждый конкретный момент времени, чтобы удовлетворить текущие потребности производственного процесса. Очевидно, что чистая потребность тоже представляет собой определенную таблицу, элементы которой рассчитываются по формуле:

Чистая потреб-
ность

=

Полная потреб-
ность

-

Инвента-
ризовано на руках

-

Страхо-
вой запас

-

Зарезер-
вировано для других целей

3.                   Последний этап работы заключается в том, что чистая потребность в материалах конвертируется в соответствующий план заказов на требуемые материалы, и в случае необходимости вносятся поправки в уже действующие планы. При этом строго учитывается время выполнения каждого заказа, другими словами MRP-система, автоматически составляя план заказов, руководствуется известным временем выполнения каждого из них (lead time). Это время, как правило, определяется Поставщиком данного материала. Этот план заказов является руководящим документом отдела закупок.

Итак, результатами работы MRP-модуля являются следующие основные элементы:

·                     План Заказов (Planned Order Schedule)

Этот элемент определяет, какое количество каждого материала должно быть заказано в каждый рассматриваемый период времени в течение срока планирования. План заказов является руководством для дальнейшей работы с поставщиками и, в частности, определяет производственную программу для внутреннего производства комплектующих, при наличии такового.

·                     Изменения к плану заказов (Changes in planned orders)

Этот элемент несёт в себе модификации к ранее спланированным заказам. Некоторые заказы могут быть отменены, изменены или задержаны, а также перенесены на другой период.

Планирование потребностей в производственных мощностях (CRP-Capacity Requirements Planning)

Для того чтобы производственная программа была осуществима, необходимо, чтобы имеющиеся в наличие производственные мощности смогли обработать то количество сырья и материалов-комплектующих, которое предписывает составленный MRP модулем план заказов, и изготовить из них готовые изделия. Собственно MRP-план является основным входным элементом модуля планирования потребностей в производственных мощностях (CRP-модуля). Другим немаловажным входным элементом является технологическая схема обработки/сборки конечного готового изделия (routing plan). Эта схема является определенной таблицей, аналогичной инвентарному списку, только с точки зрения этапов обработки и их длительности, а не комплектующих и их количества. На рисунке 5 представлена типичная технологическая схема обработки. Обычно, производственные мощности предприятия классифицируются на производственные единицы (work center). Такой производственной единицей может быть станок, инструмент, рабочий и т.д. Результатом работы CRP-модуля является план потребности в производственных мощностях (Capacity requirements plan). Этот план определяет, какое количество стандартных часов должна работать каждая производственная единица, чтобы обработать необходимое количество материалов.

Шаг

Номер
производственной
единицы

Название работы

Название
производственной
единицы

Кол-во рабочих часов

1

456676

Расточка

Токарный станок

1

2

56787, 345

Шлифовка

 

5

2.1

56787

Станочн.
шлиф.

Шлифовальный станок

4

 

345

Ручн Шлиф

Рабочий Петров Е. Н.

1

 

....

....

....

....

Рисунок 5. Технологическая схема обработки/сборки готового изделия (routing plan)

 

Также очень важно заметить, что модули MRPII-системы являются четко и однозначно взаимосвязанными (Lock step principle). Это в свою очередь означает собой тот факт, что в любом случае, если потребности в материалах (MRP-план, являющийся следствием изначально составленной программы производства (MPS)) не могут быть удовлетворены ни за счет внутреннего производства, ни за счет закупок на стороне, в план производства, очевидно, должны быть внесены изменения. Однако подобные явления должны быть исключениями. Одной из основных задач является составление успешного производственного плана с самого начала.

На рисунке 6 представлен сокращенный вариант типичного плана потребности в производственных мощностях. Этот план является выходным элементом CRP-модуля.

План потребности в производственных мощностях.
Производственная единица № 1500

Номер материала

Номер заказа
на пр-во

Кол-во

1.03.99

2.03.99

3.03.99

4.03.99

5.03.99

91234

12378

50

 

3.5

     

80902

9870

500

   

16.5

   
 

Суммарное количество часов

294

201

345

210

286

Рисунок 6. Пример плана потребности в производственных мощностях на примере одной производственной единицы.

 

Таким образом, заметим еще раз: если в результате работы CRP-модуля установлено, что MRP-план неосуществим, то производственная программа(MPS) должна быть пересмотрена, более того, вероятно, необходимо пересмотреть весь план деятельности. Однако важно осознавать, что такой шаг должен быть сделан в самом крайнем случае, так как планировщик, работающий с CRP-системой должен быть компетентен и сам осознавать производственные возможности своего предприятия, понимая, что задача компьютера - лишь оптимально распределить загрузку производственных мощностей на период планирования. Тем самым, планировщик должен стараться определить и опротестовать заведомо неосуществимый MRP-план, до отправления его в CRP-систему, или найти пути для расширения производственных мощностей до необходимого уровня.

Контроль выполнения производственного плана. Контрольные отчёты по производительности и потреблению (input/output reports)

В тот момент, когда определено, что план потребностей в производственных мощностях может быть осуществлен, начинает функционировать контроль поддержания установленной производительности. Для этого в течение всего срока планирования системой регулярно создаются контрольные отчеты по производительности (Output control reports). Пример такого отчета приведен на рисунке 7.

Контрольный отчёт для производственной единицы №1500.
Дата отчета - 23.05.1999,Пн
Единица измерения - Стандартный час работы

Статус/Дата

2.05.99

9.05.99

16.05.99

23.05.99

По плану

270

270

270

270

Реально

250

220

190

 

Отклонение

-20

-70

-150

 

Рисунок 7. Пример контрольного отчета по производительности. Установленный период создания отчетов - 1 неделя.

 

Из вышеприведенного контрольного отчета становится видно, что отклонение реального темпа производства от производственного плана в первую неделю составляло 20 часов, во вторую-50 и в третью - 80 часов работы. Таким образом, суммарное отклонение достигло 150 стандартных часов.

Для адекватной работы системы необходимо определить величину допустимого отклонения от плана производства. Например, если установлено, что величина допустимого отклонения на начало третьей недели равна половине планового недельного количества часов, то для примера на рисунке 7 это отклонение будет равняться 135 часам. И в тот момент, когда величина реального отклонения превышает 135 часов, система сигнализирует о необходимости немедленного вмешательства в работу данной производительной единицы, и принятия мер к повышению ее производительности, вплоть её выхода на плановый уровень. Такими мерами может быть привлечение дополнительных рабочих, допустимое увеличение общего времени её работы и т.д.

Кроме контрольных отчетов производительности, для каждой производительной единицы существуют контрольные отчеты потребления материалов-комплектующих. Эти отчеты существуют для быстрого определения ситуаций, когда та или иная производительная единица не развивает плановой мощности из-за недостаточного снабжения материалами. Контрольный отчет потребления внешне абсолютно идентичен с отчетом, изображенным на рисунке 7, только вместо соотношения плановых и реальных часов работы, в нем отображается разница между реальным и плановым потреблением материалов рассматриваемой производственной единицей.

Списки операций (Dispatch lists)

Еще одним необходимым документом, регулярно (как правило, ежедневно) создаваемым MRPII-системой является список операций (operation lists). Списки операций обычно формируются в начале дня и передаются (или пересылаются) мастерам соответствующих производственных цехов. В этих документах отображена последовательность проведения рабочих операций над сырьем и комплектующими материалами на каждой производственной единице и их длительность. Списки операций позволяют каждому мастеру получать актуальную информацию, и фактически делают его частью MRPII-системы. На рисунке 8 изображен пример списка операций для одной из производственных единиц.

 
 

Список операций для производственной единицы № 1500 (Токарный станок), на 23.05.99

Номер производственного заказа

Инвентарный номер материала

Количество материала

Дата обработки по плану пр-ва

Количество часов обработки

17678

98769

50

20.05.99

3.5

16789

89769

500

23.05.99

19.2

18784

56307

1100

23.05.99

28.6

67830

78567

500

23.05.99

16.5

47890

87300

120

26.05.99

8.4

Суммарное количество часов

76.2

Рисунок 8. Пример списка операций

Как видно из таблицы, приведенный список определяет приоритет выполнения операций. Например, запоздавший по каким-то причинам производственный заказ от 20.05, был поставлен MRPII-системой в очередь первым. И наоборот, заказ от 26.05.99 имеет минимальный приоритет. Сразу стоит отметить, что список операций НЕ является суточным планом (это очевидно хотя бы из того, что суммарное количество часов превышает 24), а является лишь законом для мастера, определяющим последовательность и содержание производственных операций.

Обратная связь (feedback) и её роль в MRPII-системе

Чрезвычайно важно обратить внимание на функции обратной связи (feedback) в MRPII-системе. Например, если Поставщики не способны поставить материалы-комплектующие в оговоренные сроки, они должны послать отчет о задержках сразу, как только они узнают о существовании этой проблемы. Обычно, стандартная компания имеет большое количество просроченных заказов с поставщиками. Но, как правило, даты этих заказов не отражают в достаточной степени дат реальной потребности в этих материалах. На предприятиях же, управляемых системами класса MRPII, даты поставки являются максимально близкими к времени реальной потребности в поставляемых материалах. Поэтому крайне важно заранее поставить систему в известность о возможных проблемах с заказами. В этом случае система должна сгенерировать новый план работы производственных мощностей в соответствии с новым планом заказов. В ряде случаев, когда задержка заказов далеко не является исключением, в MRPII-системе задаётся объем минимального поддержания запасов "ненадежны х" матери алов на складе (safety stock).

В настоящее время системы MRPII класса прочно входят в жизнь крупных и средних производственных организаций. Основной и эффективной чертой этих систем является возможность планировать потребности предприятия на короткие промежутки времени (недели и даже дни) и осуществлять обратную связь (например, автоматически изменять ранее построенные планы производства при сбоях поставок или поломке оборудования), внося в систему данные о проблемах в реальном времени.

Алгоритм работы MRPII-системы нацелен на внутреннее моделирование всей области деятельности предприятия. Его основная цель - учитывать и с помощью компьютера анализировать все внутрекоммерческие и внутрепроизводственные события: все те, что происходят в данный момент и все те, что запланированы на будущее. Как только в производстве допущен брак, как только изменена программа производства, как только в производстве утверждены новые технологические требования, MRPII-система мгновенно реагирует на произошедшее, указывает на проблемы, которые могут быть результатом этого и определяет, какие изменения надо внести в производственный план, чтобы избежать этих проблем или свести их к минимуму. Разумеется, далеко не всегда реально полностью устранить последствия того или иного сбоя в производственном процессе, однако MRPII-система информирует о них за максимально длительный промежуток времени, до момента их возникновения.

Таким образом, предвидя возможные проблемы заранее, и создавая руководству предприятия условия для предварительного их анализа, MRPII-система является надежным средством прогнозирования и оценки последствий внесения тех или иных изменений в производственный цикл.

Любая MRPII-система обладает определенным инструментарием для проведения планирования. Нижеперечисленные системные методологии являются фундаментальными рычагами управления любой MRPII-системы:

1.                   Методология расчёта и пересчета MRP и CRP планов.

2.                   Принцип хранения данных о внутрипроизводственных и внутрекоммерческих событиях, которые необходимы для планирования.

3.                   Методология описания рабочих и нерабочих дней для планирования ресурсов.

4.                   Установление горизонта планирования (planning horizon)

Эти методологии и принципы не являются универсальными и определяются исходя из постановки конкретной задачи, применительно к конкретному коммерческому предприятию.

Эволюция стандартов планирования. От MRPII к ERP и CSRP.

Стандарты корпоративного планирования, как и любые стандарты, со временем проходят через процесс эволюции. С годами в мире меняются принципы управления бизнесом и, соответственно, изменяются подходы к корпоративному планированию. В последнее десятилетие гиганты мировой индустрии распространили по всему миру сеть своих удаленных производственных и непроизводственных объектов управления, значительно усложнилась организационная структура самих крупных компаний и холдингов. Это в свою очередь повлекло за собой увеличение управленческих издержек и затрат на поддержание сложных и запутанных логистических структур поставок продукции. В конце концов возникла необходимость искать методики, позволяющие оптимизировать решение и этих задач. В середине 90-х был введен в обращение термин ERP-системы. ERP-методология до настоящего времени должным образом не систематизирована, и представляет собой надстройку над MRPII, нацеленную на оптимизацию работы с удаленными объектами управления. В настоящее время, под широко используемым термином "ERP-система", как правило подразумевается MRPII-система, с расширенными возможностями работы с сетью филиалов и зависимых компаний, расположенных по всему свету.

Для оптимизации управления логистическими цепочками была создана концепция SCM (Supply Chain Management), которую поддерживает большинство систем класса MRPII. SCM, положенная как компонент общей бизнес стратегии компании, позволяет существенно снизить транспортные и операционные расходы путем оптимального структурирования логистических схем поставок.

Одной из последних тенденций в бизнес-планировании, стало обращение усиленного внимания на качество обслуживания конечных потребителей продукции. Для того чтобы процветать, производители должны разрабатывать новые технологии и бизнес-процессы, которые позволяли бы им удовлетворять индивидуальные покупательские нужды и ожидания, отвечать на эти нужды товарами и услугами, которые представляют уникальную ценность для каждого покупателя. Производители должны совершить частичное изменение в стратегии и интегрировать покупателя в центр процесса планирования деятельности организации. Интеграция покупателя с ключевыми бизнес-процессами организации изменяет ее стратегию и реализацию этой стратегии, требует новую модель управления деятельностью: планирование ресурсов, синхронизированное с покупателем. Так зародилась концепция CSRP (Customer Synchronized Resource Planning). Используя принцип CSRP, дистрибьютер продукции способен записать специфические требования к продукту, зафиксировать цену и автоматически послать эту информацию в головную организацию, где информация о требованиях к продукту динамически превращается в детальные инструкции по производству и планированию. Создается список материалов и комплектующих для производства, автоматически определяются производственные маршруты, материалы планируются и заказываются и, наконец, создается рабочий заказ. Критичная для покупателя информация динамически интегрируется в основную деятельность предприятия. После этого информация о критичных предпочтениях покупателя сохраняется в центральной базе данных о потребителях, которую могут использовать подразделения обслуживания покупателей, технического обслуживания, исследований, планирования производства и другие. Таким образом, деятельность предприятия синхронизируется с потребностями покупателей.

Заключение

Эволюция стандартов планирования и управления бизнесом ни на минуту не отстаёт от темпов развития самого бизнеса, а также увеличения возможностей компьютерных систем. В последние годы, в России ощущается огромный интерес к корпоративным системам автоматизации бизнеса, однако, столь же ощутимо отсутствие информации по основным принципам их реализации. Специализированные сайты Интернет и бумажные издания фактически завалены материалами по корпоративным системам, однако, эти материалы носят характер "что такие системы могут дать", а не "то как они работают". Вследствие этого, конкретные потенциальные заказчики, желающие автоматизировать своё производство или свой бизнес, не знают элементарных принципов работы информационных систем, не знают, что кроется под широко распространенной аббревиатурой ERP, кроме того, как это что-то "крутое", дорогое, позволяющее решить все проблемы на свете. Это представление, в свою очередь, часто ведет к "мертворожденным" проектам, не реализуемым из-за отсутствия у руководителей эффективных критериев выбора класса системы, ее функциональных возможностей, методик внедрения и т.д. Автор надеется, что данное краткое описание принципов работы систем класса MRPII позволит хоть в какой-то мере устранить этот информационный вакуум.

Описание базовых принципов MRPII

Введение

Новая экономическая ситуация ставит перед предприятиями ряд задач, которые ранее ими не рассматривались. Среди наиболее важных задач, стоящих перед промышленными предприятиями в современных условиях, можно выделить:

·                     повышение конкурентной борьбы,

·                     требование выпускать продукцию в соответствии с текущими заказами покупателей, а не с долгосрочными перспективными планами,

·                     необходимость оперативного принятия решений в сложной экономической ситуации,

·                     укрепление связей между поставщиками, производителями и покупателями.

В конкурентной борьбе побеждает только тот, кто быстрее других реагирует на изменения в бизнесе и принимает более верные решения. Именно информационные технологии помогают руководителям промышленных предприятий в решении этих сложных задач. Страны рыночной экономики имеют большой опыт создания и развития информационных технологий для промышленных предприятий. Одним из наиболее распространенных методов управления производством и дистрибуции в мире является стандарт MRP II (Manufacturing Resourse Planning), разработанный в США и поддерживаемый американским обществом по контролю за производством и запасами - American Production and Inventory Control Society (APICS). APICS регулярно издает документ "MRP II Standart System", в котором описываются основные требования к информационным производственным системам. Последнее издание этой системы промышленных стандартов вышло в 1989 г.

MRP II - это набор проверенных на практике разумных принципов, моделей и процедур управления и контроля, служащих повышению показателей экономической деятельности предприятия. Идея MRP II опирается на несколько простых принципов, например, разделение спроса на зависимый и независимый. MRP II Standart System содержит описание 16 групп функций системы:

1.                   Sales and Operation Planning (Планирование продаж и производства).

2.                   Demand Management (Управление спросом).

3.                   Master Production Scheduling (Составление плана производства).

4.                   Material Requirement Planning (Планирование материальных потребностей).

5.                   Bill of Materials (Спецификации продуктов).

6.                   Inventory Transaction Subsystem (Управление складом).

7.                   Scheduled Receipts Subsystem (Плановые поставки).

8.                   Shop Flow Control (Управление на уровне производственного цеха).

9.                   Capacity Requirement Planning (Планирование производственных мощностей).

10.               Input/output control (Контроль входа/выхода).

11.               Purchasing (Материально техническое снабжение).

12.               Distribution Resourse Planning (Планирование ресурсов распределения).

13.               Tooling Planning and Control ( Планирование и контроль производственных операций).

14.               Financial Planning (Управление финансами).

15.               Simulation (Моделирование).

16.               Performance Measurement (Оценка результатов деятельности).

С накоплением опыта моделирования производственных и непроизводственных операций эти понятия постоянно уточняются, постепенно охватывая все больше функций.

В своем развитии стандарт MRP II прошел несколько этапов развития:

·                     60-70 годы - планирование потребностей в материалах, на основании данных о запасах на складе и состава изделий, (Material Requierment Planning)

·                     70-80 годы - планирование потребностей в материалах по замкнутому циклу (Cloosed Loop Material Requirment Planning), включающее составление производственной программы и ее контроль на цеховом уровне,

·                     конец 80-90-е - на основе данных, полученных от поставщиков и потребителей, ведение прогнозирования, планирования и контроля за производством,

·                     90-е - планирование потребностей в распределении и ресурсах на уровне предприятия - Enterprise Resourse Planning и Distributed Requirements Planning.

Задачей информационных систем класса MRP II является оптимальное формирование потока материалов (сырья), полуфабрикатов (в том числе находящихся в производстве) и готовых изделий. Система класса MRP II - имеет целью интеграцию всех основных процессов, реализуемых предприятием, таких как снабжение, запасы, производство, продажа и дистрибьюция, планирование, контроль за выполнением плана, затраты, финансы, основные средства и т.д.

Стандарт MRP II делит сферы отдельных функций (процедур) на два уровня: необходимый и опциональный. Для того, чтобы программное обеспечение было отнесено к классу MRP II, оно должно выполнять определенный объем необходимых (основных) функций (процедур). Некоторые поставщики ПО приняли различный диапазон реализаций опциональной части процедур этого стандарта.

Результаты использования интегрированных систем стандарта MRP II:

·                     получение оперативной информации о текущих результатах деятельности предприятия как в целом, так и с полной детализацией по отдельным заказам, видам ресурсов, выполнению планов;

·                     долгосрочное, оперативное и детальное планирование деятельности предприятия с возможностью корректировки плановых данных на основе оперативной информации;

·                     решение задач оптимизации производственных и материальных потоков;

·                     реальное сокращение материальных ресурсов на складах;

·                     планирование и контроль за всем циклом производства с возможностью влияния на него в целях достижения оптимальной эффективности в использовании производственных мощностей, всех видов ресурсов и удовлетворения потребностей заказчиков;

·                     автоматизация работ договорного отдела с полным контролем за платежами, отгрузкой продукции и сроками выполнения договорных обязательств;

·                     финансовое отражение деятельности предприятия в целом;

·                     значительное сокращение непроизводственных затрат;

·                     защита инвестиций, произведенных в информационные технологии;

·                     возможность поэтапного внедрения системы, с учетом инвестиционной политики конкретного предприятия.

В основу MRP II положена иерархия планов. Планы нижних уровней зависят от планов более высоких уровней, т.е. план высшего уровня предоставляет входные данные, намечаемые показатели и/или какие-то ограничительные рамки для планов низшего уровня. Кроме того, эти планы связаны между собой таким образом, что результаты планов нижнего уровня оказывают обратное воздействие на планы высшего уровня.

Если результаты плана нереалистичны, то этот план или планы высшего уровня должны быть пересмотрены. Таким образом можно проводить координацию спроса и предложения ресурсов на определенном уровне планирования и ресурсов на высших уровнях планирования.

СТРАТЕГИЧЕСКОЕ ПЛАНИРОВАНИЕ

Стратегическое планирование - это долгосрочное планирование. Оно обычно составляется на срок от одного до пяти лет. Оно основано на макроэкономических показателях, таких как тенденции развития экономики, изменение технологий, состояние рынка и конкуренции. Стратегическое планирование обычно распространяется на каждый год пятилетки и представляет собой плановые показатели (цели) высшего уровня.

БИЗНЕС-ПЛАНИРОВАНИЕ

Бизнес-план - это обычно план на год, который также составляется на ежегодной основе. Иногда он неоднократно пересматривается в течение года. Как правило он является результатом совещания управленческого состава, на котором сводятся планы продаж, инвестиций, развития основных средств и потребности в капитале и бюджетировании. Эта информация подается в денежном выражении. Бизнес-план определяет плановые показатели по объемам продаж и производства, а также другие планы низшего уровня.

ПЛАНИРОВАНИЕ ОБЪЕМОВ ПРОДАЖ И ПРОИЗВОДСТВА

Если бизнес-план предоставляет итоговые данные по объемам продаж помесячно (в денежном выражении), то план объемов продаж и производства разбивает эту информацию по 10-15 ассортиментным группам. В результате получают план производства, который ежемесячно пересматривается, принимая во внимание план предыдущего месяца, реальные результаты и данные бизнес-плана.

План объемов продаж и производства обычно включает следующие элементы:

Объем продаж

Производство

Запасы

Незавершенный объем производства

Отгрузка

Из этих элементов Объем Продаж и Отгрузка - это прогнозы, т.к. это внешние данные, которые прямому контролю не поддаются. Объем производства планируется, это внутренний показатель, поддающийся прямому контролю. Планы по объемам запасов и незавершенным объемам производства контролируются косвенно, манипулируя данными прогнозов объема продаж, прогнозов объема отгрузки и/или плана объемов производства.

Объемы запасов и незавершенки управляются по-разному, в зависимости от типов продукции, выпускаемой или продаваемой компанией. Плановый объем запасов - это важный фактор, особенно для тех компаний, которые производят продукцию на склад. Плановый объем незавершенки является важным фактором для тех компаний, которые производят продукцию на заказ.

Фокусом планирования объема продаж и производства является план производства. Хотя он и называется планом производства, это в принципе не просто план выпуска продукции. Он требует наличия необходимого объема ресурсов по всей компании в целом. Если отдел маркетинга планирует скачок в продажах определенного ассортимента продуктов, инженеры должны обеспечить наличие необходимого объема оборудования; отдел МТС должен будет обеспечить дополнительные поставки материалов (наличие новых поставщиков); отдел кадров должен будет обеспечить наличие дополнительного объема трудовых ресурсов, а также организовать новые рабочие смены. Плюс ко всему необходимо будет обеспечить наличие необходимого объема капитала (для оплаты дополнительного объема ресурсов и запасов).

ПЛАНИРОВАНИЕ РЕСУРСОВ

План производства будет нереален, если не будет обеспеченно наличие необходимого объема ресурсов. Планирование ресурсов - это долгосрочное планирование, которое позволяет оценить необходимый (для выполнения плана производства) и наличный объем ключевых ресурсов, таких как люди, оборудование, здания и сооружения. Если возникнет потребность в наличии необходимого объема дополнительных ресурсов, то, возможно, потребуется пересмотреть бизнес-план.

Планирование ресурсов затрагивает только ключевые ресурсы и составляется на срок действия плана по производству (обычно один год). Ресурс может считаться ключевым, если его стоимость достаточно велика, или если срок его поставки достаточно велик или если от него зависят другие ресурсы. Ресурсы могут быть как внешними (возможности поставщиков), так и внутренними (оборудование, складские площади, деньги).

ГЛАВНЫЙ ПЛАН-ГРАФИК ПРОИЗВОДСТВА (ГПГП)

Роль начальника отдела планирования - перевод производственного плана в специфичный план-график производства. Этот план - ГПГП - план производства, наложенный на шкалу времени. ГПГП показывает что будет производиться, когда и в каких объемах.

Т.к. производственный план выражен в таких единицах как рубли, часы, тонны, то для того, чтобы получить ГПГП, необходимо произвести некоторые шаги по трансформации производственного плана. Плановые объемные показатели по ассортиментной группе необходимо перевести в плановые объемы и сроки по каждому продукту этой группы в раздельности. В зависимости от типа и объема выпускаемой продукции ГПГП можно разбить на недельные, дневные и даже сменные планы.

Одна из основных целей ГПГП - это обеспечение буфера: ГПГП отличает прогнозы и потребности отдела сбыта от MRP (планирование потребностей в материалах). Философия такова: прогнозы и заказы на продажу (заказы клиентов) выражают спрос (или отгрузку), в то время как ГПГП отображает то, что реально будет произведено в соответствии с имеющимся спросом. В соответствии с ГПГП возможно производство продукции в период, когда спрос на нее невысок, и наоборот. Это может иметь место при производстве продукции, спрос на которую сезонен.

СПРОС ГПГП

Начальник отдела планирования должен принимать во внимание все источники независимого спроса. Независимый спрос - это спрос, который может быть прогнозом, обычно это спрос на готовую продукцию и запчасти. Он в корне отличается от зависимого спроса (спрос, который можно рассчитать, исходя из данных по составу изделия). Источники независимого спроса: производственный план, прогнозируемый объем отгрузки, заказы клиентов (при производстве или сборке под заказ), спрос на запчасти, межзаводской спрос и страховой запас.

Основная проблема в составлении ГПГП - это определение того, планирование по каким изделиям/комплектующим должно вестись отделом планирования, а по каким должно вестись автоматически (системой MRP). Изделия, планируемые отделом планирования, - это те изделия, планирование которых должно вестись под контролем людей. Изделия, планируемые системой MRP, т.е. автоматически, не требуют такой степени контроля (они зависят от ГПГП). Определение того, как должно вестись планирование того или иного вида изделия зависит от типов изделий и технологических процессов. Обычно очень маленькое количество изделий должны контролироваться отделом планирования.

ОБЩЕЕ ПЛАНИРОВАНИЕ МОЩНОСТЕЙ

Как и планирование ресурсов, общее планирование мощностей является долгосрочным и ведется по ключевым ресурсам. Этот процесс использует данные ГПГП, а не данные производственного плана. Так, если ГПГП выражен в объемных и временных характеристиках, то общее планирование мощностей используется для создания более детализированного плана, который может быть очень полезен при оценке средних потребностей компании в целом, а также для оценки ГПГП.

MRP ИЛИ ПЛАНИРОВАНИЕ ПОТРЕБНОСТЕЙ В МАТЕРИАЛАХ

Исторически MRP (планирование потребностей материалов) предназначалось для контроля за запасами и их пополнения. В рамках MRP II (планирование ресурсов предприятия) его использование было расширено до планирования потребностей в мощностях , проведения приоритезации и до замыкания всей цепочки планирования.

MRP отвечает на четыре основных вопроса:

Что мы собираемся производить?

Что нам для этого необходимо?

Чем мы уже располагаем?

Что нам необходимо дополучить?

ГПГП отвечает на первый вопрос "Что мы собираемся произвести?". В целях достижения целей, поставленных ГПГП, ведется планирование всей производственной и дистрибуторской деятельности. Т.к. ГПГП - это график, то он также отвечает и на такие вопросы как "Сколько" и "Когда".

Второй вопрос "Что нам для этого необходимо?" по сути спрашивает: "Какие изделия/комплектующие нам нужно произвести (или закупить), чтобы выполнить планы ГПГП?". Чтобы ответить на этот вопрос, нам нужно знать две вещи: ГПГП и правильные данные о составе изделия (структуре продукта, формуле продукта). ГПГП и данные о составе изделия позволяют системе определить Что, Сколько и Когда потребуется для того, чтобы произвести то, что нам нужно.

Вопрос "Чем мы уже располагаем?" можно разделить на два вопроса: "Что у нас уже есть на руках?" и "Что мы ожидаем по заказам?". Наличный запас на складе - это ответ на первый вопрос, а плановый объем поступлений продукции с производства и от поставщиков - это ответ на второй вопрос. Все вместе эти данные не только дают информацию о наличном объеме запасов, но они также позволяют системе оценить ожидаемый объем запаса. Чтобы ответить на последний вопрос, нужно знать ответы на три предыдущих. Взяв то, что нужно произвести (брутто-потребности), отняв то, что уже есть (на складе и плановые поступления), мы узнаем то, что нам нужно дополучить (нетто-потребности).

CRP ИЛИ ПЛАНИРОВАНИЕ ПОТРЕБНОСТЕЙ В МОЩНОСТЯХ

Но наличие необходимого объема необходимых материалов ничего не значит без наличия достаточного свободного объема рабочего времени. CRP (или планирование потребностей в мощностях) - это планирование среднего уровня, которое использует данные запланированных MRP заказов и заказов на производство для определения необходимого объема рабочего времени (как по трудовым, так и по техническим ресурсам).

Планирование ресурсов и общее планирование мощностей - это планирование высшего уровня, используемое для планирования таких ресурсов как физическое оборудование. CRP является более детализированным планированием. Загрузка рабочих мест рассчитывается на основе технологического маршрута изготовления продукта, который определяет, каким именно образом производится данный вид продукта. Технологический маршрут похож на инструкцию к применению - набор шагов (или техопераций), которые необходимо совершить для изготовления чего-то. Каждая техоперация совершается на каком-то рабочем месте, которое может состоять из одного или нескольких человек и/или оборудования.

DRP ИЛИ ПЛАНИРОВАНИЕ ПОТРЕБНОСТЕЙ В РАСПРЕДЕЛЕНИИ

Когда какие-то материалы передвигаются от поставщика к потребителю, они передвигаются по цепи поставок (или рыночному каналу). Если представить это графически, то цепь поставок представляет собой потоки спроса и предложения между поставщиками и какими-то подразделениями компании Заказчика, между этими подразделениями и клиентами или между различными подразделениями одной компании. DRP (планирование потребностей в распределении) координирует спрос, предложение и ресурсы между подразделениями одной или нескольких компаний.

В цепи поставок могут быть два и более уровней производственных и/или дистрибуторских подразделений. Эти подразделения могут находиться в различной зависимости друг от друга; важным моментом является то, что одно подразделение может поставить продукцию другому подразделению.

Например, компания производит товары на территории одного подразделения, а продает их с отдельного склада продаж.

Другая компания может иметь центральный центр дистрибуции, который поставляет продукцию на склады региональных отделений.

И третий пример: компания имеет производственные мощности в двух городах.

При планировании спроса и предложения материалов между подразделениями отвечают на три основных вопроса:

Что нам нужно получить (с других подразделений)?

Что мы собираемся поставить (другим подразделениям)?

Что мы можем поставить?

Хотя эти вопросы и похожи на вопросы, задаваемые MRP (планирование потребностей в материалах), однако существует одно принципиальное отличие. В MRP достаточно знать Какой и Когда ожидается спрос и предложение. Когда же существует несколько подразделений, между которыми постоянно передвигается продукция, тогда DRP необходимо знать плюс ко всему где (каким подразделением) возник спрос/предложение.

Ответ на вопрос "Что нам нужно получить?" создает спрос на материалы, которые необходимо поставить с другого подразделения. DRP рассчитывает полностью все эти потребности (после запуска MRP).

На вопрос "Что мы собираемся поставить?" ответ возникает при оценке всех источников спроса на продукт, включая заказы клиентов, прогноз отгрузок, потребности в запчастях, страховой запас и межзаводской спрос.

Используя данные по межзаводским запросам и заказам на распределение, между подразделениями ведется контроль спроса и предложения. На основе данных о потребностях подразделения на материалы, поставляемые другим подразделением, DRP создает запросы между этими подразделениями.

Ответ на последний вопрос "Что мы можем поставить" зависит от наличия материалов (предложение) и транспорта (ресурсов). Если спрос (потребности) превышает предложение, DRP можно использовать для закрепления материалов за несколькими подразделениями в указанной пропорции.

Философия и основные понятия MRP

В начале 60-х годов, в связи с ростом популярности вычислительных систем, возникла идея использовать их возможности для планирования деятельности предприятия, в том числе для планирования производственных процессов. Необходимость планирования обусловлена тем, что основная масса задержек в процессе производства связана с запаздыванием поступления отдельных комплектующих, в результате чего, как правило, параллельно с уменьшением эффективности производства на складах возникает избыток материалов, поступивших в срок или ранее намеченного срока. Кроме того, вследствие нарушения баланса поставок комплектующих возникают дополнительные осложнения с учетом и отслеживанием их состояния в процессе производства, т.е. фактически невозможно было определить, например, к какой партии принадлежит данный составляющий элемент в уже собранном готовом продукте. С целью предотвращения подобных проблем, была разработана методология планирования потребности в материалах MRP (Material Requirements Planning). Реализация системы, работающей по этой методологии, представляет собой компьютерную программу, позволяющую оптимально регулировать поставки комплектующих в производственный процесс, контролируя запасы на складе и саму технологию производства. Главной задачей MRP является обеспечивание гарантии наличия необходимого количества требуемых материалов-комплектующих в любой момент времени в рамках срока планирования наряду с возможным уменьшением постоянных запасов, а следовательно - разгрузкой склада. Прежде чем описывать саму структуру MRP, следует ввести краткий глоссарий основных ее понятий:

Материалами будем называть все сырье и отдельные комплектующие, составляющие конечный продукт. В дальнейшем мы не будем делать различий между понятиями "материал" и "комплектующий".

MRP-система, MRP-программа -- компьютерная программа работающая по алгоритму, регламентированному MRP методологией. Как и любая компьютерная программа, она обрабатывает файлы данных (входные элементы) и формирует на их основе файлы -результаты.

Статус материала является основным указателем на текущее состояние материала. Каждый отдельный материал в каждый момент времени, имеет статус в рамках MRP-системы, который определяет, имеется ли данный материал в наличии на складе, зарезервирован ли он для других целей, присутствует ли в текущих заказах, или заказ на него только планируется. Таким образом, статус материала однозначно описывает степень готовности каждого материала быть пущенным в производственный процесс.

Страховой запас материала необходим для поддержания процесса производства в случае возникновения непредвиденных и неустранимых задержек в его поставках. По сути, в идеальном случае, если механизм поставок полагать безупречным, MRP-методология не постулирует обязательное наличие страхового запаса, и его объемы устанавливаются различными для каждого конкретного случая, в зависимости от сложившейся ситуации с поступлением материалов. Подробней об этом будет рассказано ниже.

Потребность в материале в компьютерной MRP-программе представляет собой определенную количественную единицу, отображающую возникшую в некоторый момент времени в течение периода планирования необходимость в заказе данного материала. Различают понятия полной потребности в материале, которая отображает то количество, которое требуется пустить в производство, и чистой потребности, при вычислении которой учитывается наличие всех страховых и зарезервированных запасов данного материала. Заказ в системе автоматически создается по возникновению отличной от нуля чистой потребности.

Процесс планирования включает в себя функции автоматического создания проектов заказов на закупку и\или внутреннее производство необходимых материалов-комплектующих. Другими словами, система MRP оптимизирует время поставки комплектующих, тем самым уменьшая затраты на производство и повышая его эффективность. Основными преимуществами использования подобной системе в производстве являются:

Гарантия наличия требуемых комплектующих и уменьшение временных задержек в их доставке, и, следовательно, увеличение выпуска готовых изделий без увеличения числа рабочих мест и нагрузок на производственное оборудование.

Уменьшение производственного брака в процессе сборки готовой продукции, возникающего из-за использования неправильных комплектующих.

Упорядочивание производства ввиду контроля статуса каждого материала, позволяющего однозначно отслеживать весь его конвейерный путь, начиная от создания заказа на данный материал, до его положения в уже собранном готовом изделии. Так же благодаря этому достигается полная достоверность и эффективность производственного учета.

Все эти преимущества фактически вытекают из самой философии MRP, базирующейся на том принципе, что все материалы-комплектующие, составные части и блоки готового изделия должны поступать в производство одновременно, в запланированное время, чтобы обеспечить создание конечного продукта без дополнительных задержек. MRP-система ускоряет доставку тех материалов, которые в данный момент нужны в первую очередь и задерживает преждевременные поступления таким образом, что все комплектующие, представляющие собой полный список составляющих конечного продукта поступают в производство одновременно. Это необходимо во избежание той ситуации, когда задерживается поставка одного из материалов, и производство вынуждено приостановиться даже при наличии всех остальных комплектующих конечного продукта. Основная цель MRP-системы формировать, контролировать и при необходимости изменять даты необходимого поступления заказов таким образом, чтобы все материалы, необходимые для производства поступали одновременно. В следующем разделе будут детально рассмотрены входные элементы MRP-программы и результаты ее работы.

Формирование входной информации для MRP-программы и результаты её работы

На практике MRP-система представляет собой компьютерную программу, которая логически может быть представлена при помощи следующей диаграммы:

Диаграмма 1 Входные элементы и результаты работы MRP-программы

На приведенной выше диаграмме отображены основные информационные элементы MRP-системы. Итак, опишем основные входные элементы MRP-системы:

Описание состояния материалов (Inventory Status File) является основным входным элементом MRP-программы. В нем должна быть отражена максимально полная информация о всех материалах-комплектующих, необходимых для производства конечного продукта. В этом элементе должен быть указан статус каждого материала, определяющий, имеется ли он на руках, на складе, в текущих заказах или его заказ только планируется, а также описания, его запасов, расположения, цены, возможных задержек поставок, реквизитов поставщиков. Информация по всем вышеперечисленным позициям должна быть заложена отдельно по каждому материалу, участвующему в производственном процессе.

Программа производства (Master Production Schedule) представляет собой оптимизированный график распределения времени для производства необходимой партии готовой продукции за планируемый период или диапазон периодов. Сначала создается пробная программа производства, впоследствии тестируемая на выполнимость дополнительно прогоном через CRP-систему (Capacity Requirements Planning), которая определяет достаточно ли производственных мощностей для ее осуществления. Если производственная программа признана выполнимой, то она автоматически формируется в основную и становится входным элементом MRP-системы. Это необходимо потому как рамки требований по производственным ресурсам являются прозрачными для MRP-системы, которая формирует на основе производственной программы график возникновения потребностей в материалах. Однако, в случае недоступности ряда материалов или невозможности выполнить план заказов, необходимый для поддержания реализуемой с точки зрения CPR производственной программы, MRP-система в свою очередь указывает о необходимости внести в нее корректировки.

Перечень составляющих конечного продукта (Bills of Material File) -- это список материалов и их количество, требуемое для производства конечного продукта. Таким образом, каждый конечный продукт имеет свой перечень составляющих. Кроме того, здесь содержится описание структуры конечного продукта, т.е. он содержит в себе полную информацию по технологии его сборки. Чрезвычайно важно поддерживать точность всех записей в этом элементе и соответственно корректировать их всякий раз при внесении изменений в структуру и\или технологию производства конечного продукта.

Напомним, что каждый из вышеуказанных входных элементов представляет собой компьютерный файл данных, использующийся MRP-программой. В настоящий момент MRP-системы реализованы на самых разнообразных аппаратных платформах и включены в качестве модулей в большинство финансово-экономических систем. Мы не будем останавливаться на техническом аспекте вопроса и перейдем к описанию логических шагов работы MRP-программы. Цикл ее работы состоит из следующих основных этапов:

Прежде всего MRP-система, анализируя принятую программу производства, определяет оптимальный график производства на планируемый период.

Далее, материалы, не включенные в производственную программу, но присутствующие в текущих заказах, включаются в планирование как отдельный пункт.

На этом шаге, на основе утвержденной программы производства и заказов на комплектующие, не входящие в нее, для каждого отдельно взятого материала вычисляется полная потребность в соответствии с перечнем составляющих конечного продукта.

Чистая потреб-

ность = Полная потреб-

ность - Инвента-

ризовано на руках - Страховой запас - Зарезервировано для других целей

Далее, на основе полной потребности, учитывая текущий статус материала, для каждого периода времени и для каждого материала вычисляется чистая потребность по указанной формуле. Если чистая потребность в материале больше нуля, то системой автоматически создается заказ на материал.

И наконец, все заказы созданные ранее текущего периода планирования, рассматриваются, и в них, при необходимости, вносятся изменения, чтобы предотвратить преждевременные поставки и задержки поставок от поставщиков.

Таким образом, в результате работы MRP-программы производится ряд изменений в имеющихся заказах и , при необходимости, создаются новые для обеспечения оптимальной динамики хода производственного процесса. Эти изменения автоматически модифицируют Описание Состояния Материалов, так как создание, отмена или модификация заказа, соответственно влияет на статус материала, к которому он относится. В результате работы MRP-программы создается план заказов на каждый отдельный материал на весь срок планирования, обеспечение выполнения которого необходимо для поддержки программы производства. Основными результатами MRP-системы являются:

План Заказов (Planned Order Schedule) определяет, какое количество каждого материала должно быть заказано в каждый рассматриваемый период времени в течение срока планирования. План заказов является руководством для дальнейшей работы с поставщиками и, в частности, определяет производственную программу для внутреннего производства комплектующих при наличии такового.

Изменения к плану заказов (Changes in planned orders) являются модификациями к ранее спланированным заказам. Ряд заказов могут быть отменены, изменены или задержаны, а также перенесены на другой период.

Также, MRP-система формирует некоторые второстепенные результаты в виде отчетов, целью которых является обратить внимание на "узкие места" в течение планируемого периода, то есть те промежутки времени, когда требуется дополнительный контроль за текущими заказами, а также для того чтобы вовремя известить о возможных системных ошибках, возникших при работе программы. Итак, MRP-система формирует следующие дополнительные результаты-отчеты:

Отчет об "узких местах" планирования (Exception report) предназначен для того, чтобы заблаговременно проинформировать пользователя о промежутках времени в течение срока планирования, которые требуют особого внимания, и в которые может возникнуть необходимость внешнего управленческого вмешательства. Типичными примерами ситуаций, которые должны быть отражены в этом отчете, могут быть непредвиденно запоздавшие заказы на комплектующие, избытки комплектующих на складах и т.п.

Исполнительный отчет (Performance Report) является основным индикатором правильности работы MRP-системы и имеет целью оповещать пользователя о возникших критических ситуациях в процессе планирования, таких как, например, полное израсходование страховых запасов по отдельным комплектующим, а также о всех возникающих системных ошибках в процессе работы MRP-программы.

Отчет о прогнозах (Planning Report) представляет собой информацию, используемую для составления прогнозов о возможном будущем изменении объемов и характеристик выпускаемой продукции, полученную в результате анализа текущего хода производственного процесса и отчетах о продажах. Так же отчет о прогнозах может использоваться для долгосрочного планирования потребностей в материалах.

Таким образом, использование MRP-системы для планирования производственных потребностей позволяет оптимизировать время поступления каждого материала, тем самым значительно снижая складские издержки и облегчая ведения производственного учета. Однако, среди пользователей MRP-программ существует расхождение в мнениях относительно использования страхового запаса для каждого материала. Сторонники использования страхового запаса утверждают, что он необходим в силу того, что зачастую механизм доставки грузов не является достаточно надежным, и возникшее, в силу различных факторов, полное израсходование запасов на какой-либо материал, автоматически приводящее к остановке производства, обходится гораздо дороже, чем постоянно поддерживаемый его страховой запас. Противники использования страхового запаса утверждают, что его отсутствие является одной из центральных особенностей концепции MRP, поскольку MRP-система должна быть гибкой по отношению к внешним факторам, вовремя внося изменения к плану заказов, в случае непредвиденных и неустранимых задержек поставок. Но в реальной ситуации, как правило, вторая точка зрения может быть реализована для планирования потребностей для производства изделий, спрос на которые относительно прогнозируем и контролируем, и объем производства может быть установлен в производственной программе постоянным в течение некоторого, относительно длительного периода. Следует заметить, что в Российских условиях, когда задержки в процессах поставки являются скорее правилом, чем исключением, на практике целесообразно применять планирование с учетом страхового запаса, объемы которого устанавливаются в каждом отдельном случае.

Планирование производственных мощностей с помощью CRP-cистемы (Capacity Requirements Planning) Система планирования производственных мощностей по методологии CRP применяется для проверки пробной программы производства, созданной в соответствии с прогнозами спроса на продукцию, на возможность ее осуществления имеющимися в наличии производственными мощностями. В процессе работы CRP-системы разрабатывается план распределения производственных мощностей для обработки каждого конкретного цикла производства в течение планируемого периода. Также устанавливается технологический план последовательности производственных процедур, и в соответствии с пробной программой производства определяется степень загрузки каждой производственной единицы на срок планирования. Если после цикла работы CRP-модуля программа производства признается реально осуществимой, то она автоматически подтверждается и становится основной для MRP-системы. В противном случае в нее вносятся изменения, и она подвергается повторному тестированию с помощью CRP-модуля. В дальнейшем эволюционном развитии систем планирования производства они стали представлять собой интеграцию многих отдельных модулей, которые, взаимодействуя, увеличивали гибкость системы в целом. В следующем разделе будут описаны основные этапы дальнейшего развития систем класса MRP.

Эволюция MRP. Переход от MRP к MRPII

производственной программы план заказов на определенный период, что не удовлетворяло вполне возрастающие потребности.

С целью увеличить эффективность планирования, в конце 70-х годов Оливер Уайт и Джордж Плосл предложили идею воспроизведения замкнутого цикла (closed loop) в MRP-системах. Идея заключалась в предложении ввести в рассмотрение более широкий спектр факторов при проведении планирования путем введения дополнительных Системы планирования производства постоянно находятся в процессе эволюции. Первоначально MRP-системы фактически просто формировали на основе утвержденной функций. К базовым функциям планирования производственных мощностей и планирования потребностей в материалах было предложено добавить ряд дополнительных, таких как контроль соответствия количества произведенной продукции количеству использованных в процессе сборки комплектующих, составление регулярных отчетов о задержках заказов, об объемах и динамике продаж продукции, о поставщиках и т.д. Термин "замкнутый цикл" отражает основную особенность модифицированной системы, заключающуюся в том, что созданные в процессе ее работы отчеты анализируются и учитываются на дальнейших этапах планирования, изменяя при необходимости программу производства, а следовательно и план заказов. Другими словами, дополнительные функции осуществляют обратную связь в системе, обеспечивающую гибкость планирования по отношению к внешним факторам, таким как уровень спроса, состояние дел у поставщиков и т.п.

В дальнейшем усовершенствование системы привело к трансформации системы MRP с замкнутым циклом в расширенную модификацию, которую впоследствии назвали MRPII (Manufactory Resource Planning), ввиду идентичности аббревиатур. Эта система была создана для эффективного планирования всех ресурсов производственного предприятия, в том числе финансовых и кадровых. Кроме того, система класса MRRPII способна адаптироваться к изменениям внешней ситуации и эмулировать ответ на вопрос "Что если". MRPII представляет собой интеграцию большого количества отдельных модулей, таких как планирование бизнес-процессов, планирование потребностей в материалах, планирование производственных мощностей, планирование финансов, управление инвестициями и т.д. Результаты работы каждого из модуля анализируются всей системой в целом, что собственно и обеспечивает ее гибкость по отношению к внешним факторам. Именно это свойство является краеугольным камнем современных систем планирования, поскольку большое количество производителей производят продукцию с заведомо коротким жизненным циклом, требующую регулярных доработок. В таком случае появляется необходимость в автоматизированной системе, которая позволяет оптимизировать объемы и характеристики выпускаемой продукции, анализируя текущий спрос и положение на рынке в целом.

В последние годы системы планирования класса MRPII в интеграции с модулем финансового планирования FRP (Finance Requirements Planning) получили название систем бизнес-планирования ERP (Enterprise Requirements Planning), которые позволяют наиболее эффективно планировать всю коммерческую деятельность современного предприятия, в том числе финансовые затраты на проекты обновления оборудования и инвестиции в производство новой линейки изделий. В Российской практике, целесообразность применения систем подобного класса обуславливается, кроме того, необходимостью управлять бизнес процессами в условиях инфляции, а также жесткого налогового прессинга, поэтому, системы ERP необходимы не только для крупных предприятий, но и для небольших фирм, ведущих активный бизнес. На следующей диаграмме представлена логическая схема системы планирования ресурсов производственного предприятия:

Диаграмма 2. Логическая структура системы планирования ресурсов производственного предприятия.

Описание стандарта информационного моделирования IDEF1

Предназначение стандарта IDEF1

Деятельность любого предприятия можно представить как непрерывное изменение состояния физических и интеллектуальных объектов, имеющих отношение к предприятию, таких как сотрудники, средства производства, производимые продукты, идеи, финансы и т.д. Для эффективного менеджмента этим процессом, каждое изменение того или иного объекта должно иметь свое документальное отображение. Этими отображениями служат личные дела сотрудников, отчеты, рекламная продукция, служебные записки и т.д. Их совокупность назовем информационной областью предприятия. Движение информации (например, документооборот) и изменение ее назовем информационными потоками. Очевидно, что любому бизнес процессу, а также любому изменению физических объектов должен соответствовать определенный информационный поток. Более того, руководство, при построении стратегических планов развития и управлении деятельностью предприятия, (издавая приказы, распоряжения и т.д.), фактически руководствуется информационными потоками и вносит в них изменения, таким образом осуществляя информационный менеджмент.

Стандарт IDEF1 был разработан как инструмент для анализа и изучения взаимосвязей между информационными потоками в рамках коммерческой деятельности предприятия. Целью подобного исследования является дополнение и структуризация существующей информации и обеспечение качественного менеджмента информационными потоками. Необходимость в подобной реорганизации информационной области как правило возникает на начальном этапе построения корпоративной информационной системы, и методология IDEF1 позволяет достаточно наглядно обнаружить "черные дыры" и слабые места в существующей структуре информационных потоков. Применение методологии IDEF1, как инструмента построения наглядной модели информационной структуры предприятия по принципу "Как должно быть" позволяет решить следующие задачи:

Выяснить структуру и содержание существующих потоков информации на предприятии.

Определить, какие проблемы, выявленные в результате функционального анализа и анализа потребностей, вызваны недостатком управления соответствующей информацией.

Выявить информационные потоки, требующие дополнительного управления для эффективной реализации модели.

С помощью IDEF1 происходит изучение существующей информации о различных объектах в области деятельности предприятия. Характерно то, что IDEF1-модель включает в рассмотрение не только автоматизированные компоненты, базы данных и соответствующую им информацию, но также и реальные объекты, такие как сами сотрудники, кабинеты, телефоны и т.д. Миссия методологии IDEF1 состоит в том, чтобы выявить и четко постулировать потребности в информационном менеджменте в рамках коммерческой деятельности предприятия. В отличие от методов разработки структур баз данных (например, IDEF1X), IDEF1 является аналитическим методом и используется преимущественно для выполнения следующих действий:

Определения самой информации и структуры ее потоков, имеющих отношение к деятельности предприятия.

Определения существующих правил и законов, по которым осуществляется движение информационных потоков, а также принципов управления ими.

Выяснения взаимосвязей между существующими информационными потоками в рамках предприятия.

Выявления проблем, возникающих вследствие недостатка качественного информационного менеджмента.

Результаты анализа информационных потоков могут быть использованы для стратегического и тактического планирования деятельности предприятия и улучшения информационного менеджмента.

Однако основной целью использования методологии IDEF1 все же остается исследование движения потоков информации и принципов управления ими на начальном этапе процесса проектирования корпоративной информационно-аналитической системы, которая будет способствовать более эффективному использованию информационного пространства. Наглядные модели IDEF1 обеспечивают базис для построения мощной и гибкой информационной системы.

Основные преимущества IDEF1

Методология IDEF1 позволяет на основе простых графических изображений моделировать информационные взаимосвязи и различия между:

Реальными объектами

Физическими и абстрактными зависимостями, существующими среди реальных объектов

Информацией, относящейся к реальным объектам

Структурой данных, используемой для приобретения, накопления, применения и управления информацией.

Одним из основных преимуществ методологии IDEF1 является обеспечение последовательного и строго структурированного процесса анализа информационных потоков в рамках деятельности предприятия. Другим отличительным свойством IDEF1 является широко развитая модульность, позволяющая эффективно выявлять и корректировать неполноту и неточности существующей структуры информации на всем протяжении этапа моделирования.

Концепции моделирования IDEF1

При построении информационной модели проектировщик всегда оперирует с двумя основными глобальными областями, каждой из которых соответствует множество характерных объектов. Первой из этих областей является реальный мир, или же совокупность физических и интеллектуальных объектов, таких как люди, места, вещи, идеи и т.д., а также все свойства этих объектов и зависимости между ними. Второй же является информационная область. Она включает в себя существующие информационные отображения объектов первой области и их свойств. Информационное отображение, по существу, не является объектом реального мира, однако изменение его, как правило, является следствием некоторого изменения соответствующего ему объекта реального мира. Методология IDEF1 разработана как инструмент для исследования статического соответствия вышеуказанных областей и установления строгих правил и механизмов изменения объектов информационной области при изменении соответствующих им объектов реального мира.

Терминология и семантика IDEF1

Методология IDEF1 разделяет элементы структуры информационной области, их свойства и взаимосвязи на классы. Центральным понятием методологии IDEF1 является понятие сущности. Класс сущностей представляет собой совокупность информации, накопленной и хранящейся в рамках предприятия и соответствующей определенному объекту или группе объектов реального мира. Основными концептуальными свойствами сущностей в IDEF1 являются:

1) Устойчивость. Информация, имеющая отношение к той или иной сущности постоянно накапливается.

2) Уникальность. Любая сущность может быть однозначно идентифицирована из другой сущности.

Каждая сущность имеет своё имя и атрибуты. Атрибуты представляют собой характерные свойства и признаки объектов реального мира, относящихся к определенной сущности. Класс атрибутов представляет собой набор пар, состоящих из имени атрибута и его значения для определенной сущности. Атрибуты, по которым можно однозначно отличить одну сущность от другой, называются ключевыми атрибутами. Каждая сущность может характеризоваться несколькими ключевыми атрибутами. Класс взаимосвязей в IDEF1 представляет собой совокупность взаимосвязей между сущностями. Взаимосвязь между двумя отдельными сущностями считается существующей в том случае, если класс атрибутов одной сущности содержит ключевые атрибуты другой сущности. Каждый из вышеописанных классов имеет свое условное графическое отображение согласно методологии IDEF1.

На рис. 1 приведен пример IDEF1 - диаграммы. На ней представлены две сущности с именами "Отдел" и "Сотрудник" и взаимозвязь между ними с именем "работает в". Имя взаимосвязи всегда выражается в глагольной форме. Если же между двумя или несколькими объектами реального мира не существует установленной зависимости, то с точки зрения IDEF1, между соответсвующими им сущностями взаимосвязь также отсутствует.

В заключение стоит еще раз отметить, что стандарт IDEF1 является методом изучения и анализа, в отличие от очень сходного по терминологии и семантике стандарта IDEF1X, предназначенного для разработки структуры реляционных баз данных и оперирующего с конкретными объектами физического мира.

Описание стандарта информационно-реляционного моделирования IDEF1X

Предназначение IDEF1X

IDEF1X является методом для разработки реляционных баз данных и использует условный синтаксис, специально разработанный для удобного построения концептуальной схемы. Концептуальной схемой мы называем универсальное представление структуры данных в рамках коммерческого предприятия, независимое от конечной реализации базы данных и аппаратной платформы. Будучи статическим методом разработки, IDEF1X изначально не предназначен для динамического анализа по принципу "AS IS", тем не менее, он иногда применяется в этом качестве как альтернатива методу IDEF1. Использование метода IDEF1X наиболее целесообразно для построения логической структуры базы данных после того, как все информационные ресурсы исследованы (скажем с помощью метода IDEF1) и решение о внедрении реляционной базы данных, как части корпоративной информационной системы, было принято. Однако, не стоит забывать, что средства моделирования IDEF1X специально разработаны для построения реляционных информационных систем, и если существует необходимость проектирования другой системы, скажем объектно-ориентированной, то лучше избрать другие методы моделирования.

Существует несколько очевидных причин, по которым IDEF1X не следует применять в случае построения нереляционных систем. Во-первых, IDEF1X требует от проектировщика определить ключевые атрибуты, для того чтобы отличить одну сущность от другой, в то время как объектно-ориентированные системы не требуют задания ключевых ключей в целях идентифицирования объектов. Во-вторых, в тех случаях, когда более чем один атрибут является однозначно идентифицирующим сущность, проектировщик должен определить один из этих атрибутов первичным ключом, а все остальные вторичными. И, таким образом, построенная проектировщиком IDEF1X-модель и переданная для окончательной реализации программисту является некорректной для применения методов объектно-ориентированной реализации, и предназначена для построения реляционной системы.

Концепция и семантика IDEF1X

Сущности в IDEF1X и их атрибуты.

Хотя терминология IDEF1X практически совпадает с терминологией IDEF1, существует ряд фундаментальных отличий в теоретических концепциях этих методологий. Сущность в IDEF1X описывает собой совокупность или набор экземпляров похожих по свойствам, но однозначно отличаемых друх от друга по одному или нескольким признакам. Каждый экземпляр является реализацией сущности. Таким образом, сущность в IDEF1X описывает конкретный набор экземпляров реального мира, в отличие от сущности в IDEF1, которая представляет собой абстрактный набор информационных отображений реального мира. Примером сущности IDEF1X может быть сущность "СОТРУДНИК", которая представляет собой всех сотрудников предприятия, а один из них, скажем, Иванов Петр Сергеевич, является конкретной реализацией этой сущности. В примере, приведенном на рис. 1, каждый экземпляр сущности СОТРУДНИК содержит следующую информацию: ID сотрудника, имя сотрудника, адрес сотрудника и т.п. В IDEF1X модели эти свойства называются атрибутами сущности. Каждый атрибут содержит только часть информации о сущности.

Связи между сущностями

Связи в IDEF1X представляют собой ссылки, соединения и ассоциации между сущностями. Связи это суть глаголы, которые показывают, как соотносятся сущности между собой. Ниже приведен ряд примеров связи между сущностями:

Отдел <состоит из> нескольких Сотрудников

Самолет <перевозит> нескольких Пассажиров.

Сотрудник <пишет> разные Отчеты.

Во всех перечисленных примерах взаимосвязи между сущностями соответствуют схеме один ко многим. Это означает, что один экземпляр первой сущности связан с несколькими экземплярами второй сущности. Причем первая сущность называется родительской, а вторая - дочерней. В приведенных примерах глаголы заключены в угловые скобки. Связи отображаются в виде линии между двумя сущностями с точкой на одном конце и глагольной фразой, отображаемой над линией. На рис. 1 приводится диаграмма связи между Сотрудником и Отделом.

Отношения многие ко многим обычно используются на начальной стадии разработки диаграммы, например, в диаграмме зависимости сущностей и отображаются в IDEF1X в виде сплошной линии с точками на обоих концах. Так как отношения многие ко многим могут скрыть другие бизнес правила или ограничения, они должны быть полностью исследованы на одном из этапов моделирования. Например, иногда отношение многие ко многим на ранних стадиях моделирования идентифицируется неправильно, на самом деле представляя два или несколько случаев отношений один-ко-многим между связанными сущностями. Или, в случае необходимости хранения дополнительных сведений о связи многие-ко-многим, например, даты или комментария, такая связь должна быть заменена дополнительной сущностью, содержащей эти сведения. При моделировании необходимо быть увереным в том, что все отношения многие ко многим будут подробно обсуждены на более поздних стадиях моделирования для обеспечения правильного моделирования отношений.

Идентификация сущностей. Представление о ключах.

Сущность описывается в диаграмме IDEF1X графическим объектом в виде прямоугольника. На рис.2 приведен пример IDEF1X диаграммы. Каждый прямоугольник, отображающий собой сущность, разделяется горизонтальной линией на часть, в которой расположены ключевые поля и часть, где расположены неключевые поля. Верхняя часть называется ключевой областью, а нижняя часть областью данных. Ключевая область объекта СОТРУДНИК содержит поле "Уникальный идентификатор сотрудника", в области данных находятся поля "Имя сотрудника", "Адрес сотрудника", "Телефон сотрудника" и т.д.

Ключевая область содержит первичный ключ для сущности. Первичный ключ - это набор атрибутов, выбранных для идентификации уникальных экземпляров сущности. Атрибуты первичного ключа располагаются над линией в ключевой области. Как следует из названия, неключевой атрибут - это атрибут, который не был выбран ключевым. Неключевые атрибуты располагаются под чертой, в области данных.

При создании сущности в IDEF1X модели, одним из главных вопросов, на который нужно ответить, является: "Как можно идентифицировать уникальную запись?". Для этого требуется уникальная идентификация каждой записи в сущности для того, чтобы правильно создать логическую модель данных. Напомним, что сущности в IDEF1X всегда имеют ключевую область и, поэтому в каждой сущности должны быть определены ключевые атрибуты.

Выбор первичного ключа для сущности является очень важным шагом, и требует большого внимания. В качестве первичных ключей могут быть использованы несколько атрибутов или групп атрибутов. Атрибуты, которые могут быть выбраны первичными ключами, называются кандидатами в ключевые атрибуты (потенциальные атрибуты). Кандидаты в ключи должны уникально идентифицировать каждую запись сущности. В соответствии с этим, ни одна из частей ключа не может быть NULL, не заполненной или отсутствующей.

Например, для того, чтобы корректно использовать сущность СОТРУДНИК в IDEF1X модели данных (а позже в базе данных), необходимо иметь возможность уникально идентифицировать записи. Правила, по которым вы выбираете первичный ключ из списка предполагаемых ключей, очень строги, однако могут быть применены ко всем типам баз данных и информации. Правила устанавливают, что атрибуты и группы атрибутов должны:

Уникальным образом идентифицировать экземпляр сущности.

Не использовать NULL значений.

Не изменяться со временем. Экземпляр идентифицируется при помощи ключа. При изменении ключа, соответственно меняется экземпляр.

Быть как можно более короткими для использования индексирования и получения данных. Если вам нужно использовать ключ, являющийся комбинацией ключей из других сущностей, убедитесь в том, что каждая из частей ключа соответствует правилам.

Для наглядного представления о том, как целесообразно выбирать первичные ключи, приведем следующий пример - выберем первичный ключ для знакомой нам сущности "СОТРУДНИК":

Атрибут "ID сотрудника" является потенциальным ключом, так как он уникален для всех экземпляров сущности СОТРУДНИК.

Атрибут "Имя сотрудника" не очень хорош для потенциального ключа, так как среди служащих на предприятии могут быть, к примеру, двое Иванов Петровых.

Атрибут "Номер страхового полиса сотрудника" является уникальным, но проблема в том, что СОТРУДНИКА может не иметь такового.

Комбинация атрибутов "имя сотрудника" и "дата рождения сотрудника" может оказаться удачной для наших целей и стать искомым потенциальным ключом.

После проведенного анализа можно назвать два потенциальных ключа - первый "Номер сотрудника" и комбинация, включающая поля "имя сотрудника" и "Дата рождения сотрудника". Так как атрибут "Номер сотрудника" имеет самые короткие и уникальные значения, то он лучше других подходит для первичного ключа.

При выборе первичного ключа для сущности, разработчики модели часто используют дополнительный (суррогатный) ключ, т.е. произвольный номер, который уникальным образом определяет запись в сущности. Атрибут "Номер сотрудника" является примером суррогатного ключа. Суррогатный ключ лучше всего подходит на роль первичного ключа потому, что является коротким и быстрее всего идентифицирует экземпляры в объекте. К тому же суррогатные ключи могут автоматически генерироваться системой так, чтобы нумерация была сплошной, т.е. без пропусков.

Потенциальные ключи, которые не выбраны первичными, могут быть использованы в качестве вторичных или альтернативных ключей. С помощью альтернативных ключей часто отображают различные индексы доступа к данным в конечной реализации реляционной базы.

Если сущности в IDEF1X диаграмме связаны, связь передает ключ (или набор ключевых атрибутов) дочерней сущности. Эти атрибуты называются внешними ключами. Внешние ключи определяются как атрибуты первичных ключей родительского объекта, переданные дочернему объекту через их связь. Передаваемые атрибуты называются мигрирующими.

Классификация сущностей в IDEF1X. Зависимые и независимые сущности.

При разработке модели, зачастую приходится сталкиваться с сущностями, уникальность которых зависит от значений атрибута внешнего ключа. Для этих сущностей (для уникального определения каждой сущности) внешний ключ должен быть частью первичного ключа дочернего объекта.

Дочерняя сущность, уникальность которой зависит от атрибута внешнего ключа, называется зависимой сущностью. В примере на рис.1 сущность СОТРУДНИК является зависимой сущностью потому, что его идентификация зависит от сущности ОТДЕЛ. В обозначениях IDEF1X зависимые сущности представлены в виде закругленных прямоугольников.

Зависимые сущности далее классифицируются на сущности, которые не могут существовать без родительской сущности и сущности, которые не могут быть идентифицированы без использования ключа родителя (сущности, зависящие от идентификации). Сущность СОТРУДНИК принадлежит ко второму типу зависимых сущностей, так как сотрудники могут существовать и без отдела.

Напротив, существуют ситуации, в которых сущность зависит от существования другой сущности. Рассмотрим две сущности: ЗАПРОС, используемый для отслеживания запросов покупателей, и ПОЗИЦИЯ ЗАПРОСА, который отслеживает отдельные элементы в ЗАПРОСе. Связь между этими двумя сущностями может быть выражена в виде ЗАПРОС <содержит> один или несколько ПОЗИЦИЙ ЗАПРОСА. В этом случае, ПОЗИЦИЯ ЗАПРОСА зависит от существования ЗАКАЗА.

Сущности, не зависящие при идентификации от других объектов в модели, называются независимыми сущностями. В вышеописанном примере сущность ОТДЕЛ можно считать независимой. В IDEF1X независимые сущности представлены в виде прямоугольников.

Типы связей между сущностями. Идентифицирующие и неидентифицирующие связи.

В IDEF1X концепция зависимых и независимых сущностей усиливается типом взаимосвязей между двумя сущностями. Если вы хотите, чтобы внешний ключ передавался в дочернюю сущность (и, в результате, создавал зависимую сущность), то можете создать идентифицирующую связь между родительской и дочерней сущностями.

Идентифицирующие взаимосвязи обозначаются сплошной линией между сущностями.

Неидентифицирующие связи, являющиеся уникальными для IDEF1X, также связывают родительскую сущность с дочерней. Неидентифицирующие связи используются для отображения другого типа передачи атрибутов внешних ключей - передачи в область данных дочерней сущности (под линией).

Неидентифицирующие связи отображаются пунктирной линией между объектами. Так как переданные ключи в неидентифицирующей связи не являются составной частью первичного ключа дочерней сущности, то этот вид связи не проявляется ни в одной идентифицирующей зависимости. В этом случае и ОТДЕЛ, и СОТРУДНИК рассматриваются как независимые сущности.

Тем не менее, взаимосвязь может отражать зависимость существования, если бизнес правило для взаимосвязи определяет то, что внешний ключ не может принимать значение NULL. Если внешний ключ должен существовать, то это означает, что запись в дочерней сущности может существовать только при наличии ассоциированной с ним родительской записи.

Преимущества IDEF1X

Основным преимуществом IDEF1X, по сравнению с другими многочисленными методами разработки реляционных баз данных, такими как ER и ENALIM, является жесткая и строгая стандартизация моделирования. Установленные стандарты позволяют избежать различной трактовки построенной модели, которая несомненно является значительным недостатком ER.

Описание стандарта моделирования технологических процессов IDEF3

Предназначение IDEF3

IDEF3 является стандартом документирования технологических процессов, происходящих на предприятии, и предоставляет инструментарий для наглядного исследования и моделирования их сценариев. Сценарием (Scenario) мы называем описание последовательности изменений свойств объекта в рамках рассматриваемого процесса (например, описание последовательности этапов обработки детали в цеху и изменение её свойств после прохождения каждого этапа). Исполнение каждого сценария сопровождается соответствующим документооборотом, который состоит из двух основных потоков: документов, определяющих структуру и последовательность процесса (технологических указаний, описаний стандартов и т.д.), и документов, отображающих ход его выполнения (результатов тестов и экспертиз, отчетов о браке, и т.д.). Для эффективного управления любым процессом необходимо иметь детальное представление об его сценарии и структуре сопутствующего документооборота. Средства документирования и моделирования IDEF3 позволяют выполнять следующие задачи:

Документировать имеющиеся данные о технологии процесса, выявленные, скажем, в процессе опроса компетентных сотрудников, ответственных за организацию рассматриваемого процесса.

Определять и анализировать точки влияния потоков сопутствующего документооборота на сценарий технологических процессов.

Определять ситуации, в которых требуется принятие решения, влияющего на жизненный цикл процесса, например изменение конструктивных, технологических или эксплуатационных свойств конечного продукта.

Содействовать принятию оптимальных решений при реорганизации технологических процессов.

Разрабатывать имитационные модели технологических процессов, по принципу "КАК БУДЕТ, ЕСЛИ..."

Два типа диаграмм в IDEF3

Существуют два типа диаграмм в стандарте IDEF3, представляющие описание одного и того же сценария технологического процесса в разных ракурсах. Диаграммы, относящиеся к первому типу, называются диаграммами Описания Последовательности Этапов Процесса (Process Flow Description Diagrams, PFDD), а ко второму - диаграммами Состояния Объекта в и его Трансформаций Процессе (Object State Transition Network, OSTN). Предположим, требуется описать процесс окраски детали в производственном цехе на предприятии. С помощью диаграмм PFDD документируется последовательность и описание стадий обработки детали в рамках исследуемого технологического процесса. Диаграммы OSTN используются для иллюстрации трансформаций детали, которые происходят на каждой стадии обработки.

На следующем примере опишем, как графические средства IDEF3 позволяют документировать вышеуказанный производственный процесс окраски детали. В целом, этот процесс состоит непосредственно из самой окраски, производимой на специальном оборудовании и этапа контроля ее качества, который определяет, нужно ли деталь окрасить заново (в случае несоответствия стандартам и выявления брака) или отправить ее в дальнейшую обработку.

пример PFFD иаграммы

Рисунок 1. Пример PFDD диаграммы.

На рис.1 изображена диаграмма PFDD, являющаяся графическим отображение сценария обработки детали. Прямоугольники на диаграмме PFDD называются функциональными элементами или элементами поведения (Unit of Behavior, UOB), и обозначают событие, стадию процесса или принятие решения. Каждый UOB имеет свое имя, отображаемое в глагольном наклонении, и уникальный номер. Стрелки или линии являются отображением перемещения детали между UOB-блоками в ходе процесса. Линии бывают следующих видов:

- Старшая (Precedence) - сплошная линия, связывающая UOB. Рисуется слева направо или сверху вниз.

- Отношения (Relational Link)- пунктирная линия, использующаяся для изображения связей между UOB

- Потоки объектов (Object Flow)- стрелка с двумя наконечниками используется для описания того факта, что объект (деталь) используется в двух или более единицах работы, например, когда объект порождается в одной работе и используется в другой.

Объект, обозначенный J1 - называется перекрестком (Junction). Перекрестки используются для отображения логики взаимодействия стрелок (потоков) при слиянии и разветвлении или для отображения множества событий, которые могут или должны быть завершены перед началом следующей работы. Различают перекрестки для слияния (Fan-in Junction) и разветвления (Fan-out Junction) стрелок. Перекресток не может использоваться одновременно для слияния и для разветвления. При внесении перекрестка в диаграмму необходимо указать тип перекрестка. Классификация возможных типов перекрестков приведена в таблице.

Обозначение

Наименование

Смысл в случае слияния стрелок
(Fan-in Junction)

Смысл в случае разветвления стрелок (Fan-out Junction)

Asynchronous AND

Все предшествующие процессы должны быть завершены

Все следующие процессы должны быть запущены

Synchronous AND

Все предшествующие процессы завершены одновременно

Все следующие процессы запускаются одновременно

Asynchronous OR

Один или несколько предшествующих процессов должны быть завершены

Один или несколько следующих процессов должны быть запущены

Synchronous OR

Один или несколько предшествующих процессов завершаются одновременно

Один или несколько следующих процессов запускаются одновременно

XOR (Exclusive OR)

Только один предшествующий процесс завершен

Только один следующий процесс
запускается

Все перекрестки в PFDD диаграмме нумеруются, каждый номер имеет префикс "J".

Сценарий, отображаемый на диаграмме, можно описать в следующем виде:

Деталь поступает в окрасочный цех, подготовленной к окраске. В процессе окраски наносится один слой эмали при высокой температуре. После этого, производится сушка детали, после которой начинается этап проверки качества нанесенного слоя. Если тест подтверждает недостаточное качество нанесенного слоя (недостаточную толщину, неоднородность и т.д.), то деталь заново пропускается через цех окраски. Если деталь успешно проходит контроль качества, то она отправляется в следующий цех для дальнейшей обработки.

Каждый функциональный блок UOB может иметь последовательность декомпозиций, и, следовательно, может быть детализирован с любой необходимой точностью. Под декомпозицией мы понимаем представление каждого UOB с помощью отдельной IDEF3 диаграммы. Например, мы можем декомпозировать UOB "Окрасить Деталь", представив его отдельным процессом и построив для него свою PFDD диаграмму. При этом эта диаграмма будет называться дочерней по отношению к изображенной на рис. 1, а та, соответственно родительской. Номера UOB дочерних диаграмм имеют сквозную нумерацию, т.е., если родительский UOB имеет номер "1", то блоки UOB на его декомпозиции будут соответственно иметь номера "1.1", "1.2" и т.д. Применение принципа декомпозиции в IDEF3 позволяет структурированно описывать процессы с любым требуемым уровнем детализации.

Рисунок 2. Пример OSTN диаграммы

Если диаграммы PFDD - технологический процесс "С точки зрения наблюдателя", то другой класс диаграмм IDEF3 OSTN позволяет рассматривать тот же самый процесс "С точки зрения объекта". На рис.2 представлено отображение процесса окраски с точки зрения OSTN диаграммы. Состояния объекта (в нашем случае детали) и Изменение состояния являются ключевыми понятиями OSTN диаграммы. Состояния объекта отображаются окружностями, а их изменения - направленными линиями. Каждая линия имеет ссылку на соответствующий функциональный блок UOB, в результате которого произошло отображаемое ей изменение состояния объекта.

Описание стандарта онтологического исследования IDEF5

Исторически, понятие онтологии появилось в одной из ветвей философии, называемой метафизикой, которая изучает устройство реального мира. Основной характерной чертой онтологического анализа является, в частности, разделение реального мира на составляющие и классы объектов (at its joints) и определение их онтологий, или же совокупности фундаментальных свойств, которые определяют их изменения и поведение. Таким образом, естественная наука представляет собой типичный пример онтологического исследования. Например, атомная физика классифицирует и изучает свойства наиболее фундаментальных объектов реального мира, таких как элементарные частицы, а биология, в свою очередь, описывает характерные свойства живых организмов, населяющих планету.

Однако, фундаментальные и естественные науки не обладают достаточным инструментарием для того, чтобы полностью охватить область, представляющую интерес для онтологического исследования. Например, существует большое количество сложных формаций или систем, созданных и поддерживаемых человеком, таких как производственные фабрики, военные базы, коммерческие предприятия и т.д. Эти формации представляют собой совокупность взаимосвязанных между собой объектов и процессов, в которых эти объекты тем или иным образом участвуют. Онтологическое исследование подобных сложных систем позволяет накопить ценную информацию об их работе, результаты анализа которой будут иметь решающее мнение при проведении процесса реорганизации существующих и построении новых систем.

Методология IDEF5 обеспечивает наглядное представление данных, полученных в результате обработки онтологических запросов в простой естественной графической форме.

Основные принципы онтологического анализа

Онтологический анализ обычно начинается с составления словаря терминов, который используется при обсуждении и исследовании характеристик объектов и процессов, составляющих рассматриваемую систему, а также создания системы точных определений этих терминов. Кроме того, документируются основные логические взаимосвязи между соответствующими введенным терминам понятиями. В дальнейшем мы не будем делать различия между понятиями и терминами. Результатом этого анализа является онтология системы, или же совокупность словаря терминов, точных их определений взаимосвязей между ними.

Таким образом, онтология включает в себя совокупность терминов и правила, согласно которым эти термины могут быть скомбинированы для построения достоверных утверждений о состоянии рассматриваемой системы в некоторый момент времени. Кроме того, на основе этих утверждений могут быть сделаны соответствующие выводы, позволяющие вносить изменения в систему для повышения эффективности её функционирования.

В любой системе существуют две основные категории предметов восприятия, такие как сами объекты, составляющие систему (физические и интеллектуальные), и взаимосвязи между этими объектами, характеризующие состояние системы. В терминах онтологии понятие взаимосвязи однозначно описывает или, другими словами, является точным дескриптором зависимости между объектами системы в реальном мире, а термины - являются, соответственно, точными дескрипторами самих реальных объектов.

При построении онтологии в первую очередь происходит создание списка или базы данных дескрипторов и с помощью них, если их набор достаточен, создается модель системы. Таким образом, на начальном этапе должны быть выполнены следующие задачи:

1) Создание и документирования словаря терминов

2) Описание правил и ограничений, согласно которым на базе введенной терминологии формируются достоверные утверждения, описывающие состояние системы.

3) Построение модели, которая на основе существующих утверждений позволяет формировать необходимые дополнительные утверждения.

Что мы имеем в виду под необходимыми дополнительными утверждениями? Дело в том, что при рассмотрении каждой системы существует огромное количество утверждений, достоверно отображающих ее состояние в различных разрезах, а построенная онтологическим способом модель должна выбирать из них наиболее полезные для эффективного рассмотрения в том или ином контексте. Дополнительно эта модель помогает описывать поведение объектов и соответствующее изменение взаимосвязей между ними, или, другими словами, поведение системы. Таким образом, онтология представляет собой некий словарь данных, включающий в себя и терминологию и модель поведения системы.

Концепции IDEF5

Процесс построения онтологии согласно методологии IDEF5 состоит из пяти основных действий:

1) Изучения и систематизирования начальных условий. Это действие устанавливает основные цели и контексты проекта разработки онтологии, а также распределяет роли между членами проекта.

2) Сбора и накапливания данных. На этом этапе происходит сбор и накапливание необходимых начальных данных для построения онтологии.

3) Анализа данных. Эта стадия заключается в анализе и группировке собранных данных и предназначена для облегчения построения терминологии.

4) Начального развития онтологии. На этом этапе формируется предварительная онтология на основе отобранных данных.

5) Уточнения и утверждения онтологии - Заключительная стадия процесса.

Язык описания онтологий в IDEF5

Для поддержания процесса построения онтологий в IDEF5 существуют специальные онтологические языки: схематический язык (Schematic Language-SL) и язык доработок и уточнений (Elaboration Language-EL). SL является наглядным графическим языком, специально предназначенным для изложения компетентными специалистами в рассматриваемой области системы основных данных в форме онтологической информации (См. рисунок 1). Этот несложный язык позволяет естественным образом представлять основную информацию в начальном развитии онтологии и дополнять существующие онтологии новыми данными. EL представляет собой структурированный текстовый язык, который позволяет детально характеризовать элементы онтологии.

Язык SL позволяет строить разнообразные типы диаграмм и схем в IDEF5. Основная цель всех этих диаграмм - наглядно и визуально представлять основную онтологическую информацию.

Несмотря на кажущееся сходство, семантика и обозначения схематичного языка SL существенно отличаются от семантики и обозначений других графических языков. Дело в том, что часть элементов графической схемы SL может быть изменена или вовсе не приниматься во внимание языком EL. Причина этого состоит в том, что основной целью применения SL является создание лишь вспомогательной структурированной конструкции онтологии, и графические элементы SL не несут достаточной информации для полного представления и анализа системы, тем самым они не предназначены для сохранения при конечном этапе проекта. Тщательный анализ, обеспечение полноты представления структуры данных, полученных в результате онтологического исследования, являются задачей применения языка EL.

Обозначения классов, отдельных элементов

Обозначение взаимосвязей и изменения состояния

Обозначение процессов, соединений и перекрестков

Обозначение класса:

Обозначение отдельного элемента:

Обозначение первичных взаимосвязей:

1) Взаимосвязь многие со многими

2) Взаимосвязь двух классов

Обозначение вторичных взаимосвязей между двумя классами:

Обозначения изменения состояния:

1) Медленное изменение

2) Быстрое изменение

3) Мгновенное изменение

Обозначение процесса

Обозначение соединений:

Обозначение перекрестков:

Рисунок 1. Схематические графические изображения IDEF5

Виды схем и диаграмм IDEF5

Как правило, наиболее важные и заметные зависимости между объектами всегда являются преобладающими, когда конкретные люди высказывают свои знания и мнения, касающиеся той или иной системы. Подобные взаимосвязи явным образом описываются языками IDEF5. Всего существуют четыре основных вида схем, которые наглядно используются для накопления информации об онтологии в достаточно прозрачной графической форме.

1.                  Диаграмма классификации. Диаграмма классификации обеспечивает механизм для логической систематизации знаний, накопленных при изучении системы. Существуют два типа таких диаграмм: Диаграмма строгой классификации (Description Subsumption - DS) и диаграмма естественной или видовой классификации (Natural Kind Classification - NKC). Основное отличие диаграммы DS заключается в том, что определяющие свойства классов высшего и всех последующих уровней являются необходимым и достаточным признаком принадлежности объекта к тому или иному классу. На рисунке 2 приведен пример такой диаграммы, построенной на основе тривиальной возможности классификации многоугольников по количеству углов. Из геометрии известно точное математическое определение многоугольника, суть определяющих свойств родительского класса. Определяющим свойством каждого дочернего класса дополнительно является количество углов в многоугольнике. Очевидно, зная это определяющее свойство для любого многоугольника, можно однозначно отнести его к тому или иному дочернему классу. С помощью диаграмм DS, как правило, классифицируются логические объекты.

Рисунок 2. Виды диаграмм IDEF5: диаграмма строгой классификации (слева) и диаграмма естественной классификации (справа).

Диаграммы естественной классификации или же диаграммы NKC, наоборот, не предполагают того, что свойства класса являются необходимым и достаточным признаком для принадлежности к ним тех или иных объектов. В этом виде диаграмм определение свойств класса является более общим. Пример такой диаграммы так же приведен на рис.2.

2.                  Композиционная схема. Композиционные схемы (Composition Schematics) являются механизмом графического представления состава классов онтологии и фактически представляют собой инструменты онтологического исследования по принципу "Что из чего состоит". В частности, композиционные схемы позволяют наглядно отображать состав объектов, относящихся к тому или иному классу. На рисунке 3 изображена композиционная схема шариковой ручки, относящейся к классу шариковых автоматических ручек. В данном случае шариковая ручка является системой, к которой мы применяем методы онтологического исследования. С помощью композиционной схемы мы наглядно документируем, что авторучка состоит из нижней и верхней трубки, нижняя трубка, в свою очередь, включает в себя кнопку и фиксирующий механизм, а верхняя трубка включает в себя стержень и пружину.

Рисунок 3. Пример композиционной схемы

3. Схема взаимосвязей. Схемы взаимосвязей (Relation Schematics) позволяют разработчикам визуализировать и изучать взаимосвязи между различными классами объектов в системе. В некоторых случаях схемы взаимосвязей используются для отображения зависимостей между самими же классовыми взаимосвязями. Мотивацией для развития подобной возможности послужило то тривиальное правило, что все вновь разработанные концепции всегда базируются на уже существующих и изученных. Это тесно согласуется с теорией Новака и Гоуэна (Novak & Gowin, 1984), суть которой в том, что изучение любой системы часто происходит от частного к общему, то есть, происходит изыскание и исследование новой частной информации, влияющее на конечные характеристики более общей концепции, к которой эта информация имела прямое отношение. Исходя из этой гипотезы, естественным образом изучения новой или плохо понимаемой взаимосвязи является соотнесение ее с достаточно изученной взаимосвязью для исследования характеристик их сосуществования.

3.                  Диаграмма состояния объекта. Диаграмма состояния объекта (Object State Schemantic) позволяет документировать тот или иной процесс с точки зрения изменения состояния объекта. В происходящих процессах могут произойти два типа изменения объекта: объект может поменять свое состояние или класс. Между этими двумя видами изменений по сути не существует принципиальной разницы: объекты, относящиеся к определенному классу K, в начальном состоянии в течение процесса могут просто перейти к его дочернему или просто родственному классу. Например, полученная в процессе нагревания теплая вода, уже относится не к классу ВОДА, а к его дочернему классу ТЕПЛАЯ ВОДА. Однако, при формальном описании процесса во избежание путаницы целесообразно разделять оба вида изменений, и для такого разделения используется обозначения следующего вида: "класс:состояние". Например, теплая вода будет описываться следующим образом: "вода:теплая", холодная - "вода:холодная" и так далее. Таким образом, диаграммы состояния в IDEF5 наглядно представляют изменения состояния или класса объекта в течение всего хода процесса. Пример такой диаграммы приведен на рис.4

Заключение

Суммируя вышеизложенное, еще раз отметим, что строение и свойства любой системы могут быть эффективно исследованы и задокументированы при помощи следующих средств: словаря терминов, используемых при описании характеристик объектов и процессов, имеющих отношение к рассматриваемой системе, точных и однозначных определений всех терминов этого словаря и классификации логических взаимосвязей между этими терминами.

Набор этих средств, по сути, и является онтологией системы, а стандарт IDEF5 предоставляет структурированную методологию, с помощью которой можно наглядно и эффективно разрабатывать, поддерживать и изучать эту онтологию.

В. Ивлев, Т. Попова

Методология функционально-стоимостного анализа ABC (Activity Based Costing)

Многие пользователи считают функционально-стоимостной анализ (ФСА) достаточно сложным для понимания. Возможно, это связано с тем, что существует слишком мало информации, объясняющей, что же он собственно из себя представляет. Целью данной статьи является раскрытие сущности функционально-стоимостного анализа, простоты его применения, а также исключение элемента загадочности, связанного с ним.

Функционально-стоимостной анализ позволяет выполнить следующие виды работ:

определение и проведение общего анализа себестоимости бизнес-процессов на предприятии (маркетинг, производство продукции и оказание услуг, сбыт, менеджмент качества, техническое и гарантийное обслуживание и др.);

проведение функционального анализа, связанного с установлением и обоснованием выполняемых структурными подразделениями предприятий функций с целью обеспечения выпуска высокого качества продукции и оказания услуг;

определение и анализ основных, дополнительных и ненужных функциональных затрат;

сравнительный анализ альтернативных вариантов снижения затрат в производстве, сбыте и управлении за счет упорядочения функций структурных подразделений предприятия;

анализ интегрированного улучшения результатов деятельности предприятия.

В настоящее время метод ФСА стал всеобъемлющим инструментом оценки систем, процессов и концепций.

Функционально-стоимостной анализ (ФСА, Activity Based Costing, АВС) - метод определения стоимости и других характеристик изделий, услуг и потребителей, использующих в качестве основы функции и ресурсы, задействованные в производстве, маркетинге, продаже, доставке, технической поддержке, оказании услуг, обслуживании клиентов, а также обеспечении качества.

Метод ФСА разработан как "операционно-ориентированная" альтернатива традиционным финансовым подходам. В частности, в отличие от традиционных финансовых подходов метод ФСА:

предоставляет информацию в форме, понятной для персонала предприятия, непосредственно участвующего в бизнес-процессе;

распределяет накладные расходы в соответствии с детальным просчетом использования ресурсов, подробным представлением о процессах и их влиянием на себестоимость, а не на основании прямых затрат или учета полного объема выпускаемой продукции.

ФСА-метод - один из методов, позволяющий указать на возможные пути улучшения стоимостных показателей. Цель создания ФСA-модели для совершенствования деятельности предприятий - достичь улучшений в работе предприятий по показателям стоимости, трудоемкости и производительности. Проведение расчетов по ФСА-модели позволяет получить большой объем ФСА-информации для принятия решения.

В основе метода ФСА лежат данные, которые обеспечивают менеджеров информацией, необходимой для обоснования и принятия управленческих решений при применении таких методов, как:

"точно в срок" (Just-in-time, JIT) и KANBAN;

глобальное управление качеством (Total Quality Management, TQM);

непрерывное улучшение (Kaizen);

реинжиниринга бизнес-процессов (Business Process Reengineering, BPR).

Концепция ФСА позволяет представить управленческую информацию в виде финансовых показателей. Используя в качестве единиц измерения финансовых показателей просто US$ или RUB, ФСА-метод отображает финансовое состояние компании лучше, чем это делает традиционный бухгалтерский учет. Это происходит потому, что ФСА-метод физически отражает функции людей, машин и оборудования. ФСА-метод отображает уровень потребления ресурсов функциями, а также причины, по которым эти ресурсы используются.

ФСА-информацию можно использовать как для текущего (оперативного) управления, так и для принятия стратегических решений. На уровне тактического управления информацию из ФСА-модели можно использовать для формирования рекомендаций по увеличению прибыли и повышению эффективности деятельности организации. На стратегическом - помощь в принятии решений относительно реорганизации предприятия, изменения ассортимента продуктов и услуг, выхода на новые рынки, диверсификации и т.д. ФСА-информация показывает, как можно перераспределить ресурсы с максимальной стратегической выгодой, помогает выявить возможности тех факторов (качество, обслуживание, снижение стоимости, уменьшение трудоемкости), которые имеют наибольшее значение, а также определить наилучшие варианты капиталовложений.

Основные направления использования ФСА-модели для реорганизации бизнес-процессов - это повышение производительности, снижение стоимости, трудоемкости, времени и повышение качества.

Повышение производительности включает в себя три этапа. На первом этапе осуществляется анализ функций для определения возможностей повышения эффективности их выполнения. На втором - выявляются причины непроизводительных расходов и пути их устранения. И, наконец, на третьем этапе осуществляется мониторинг и ускорение нужных изменений с помощью измерения основных параметров производительности.

Что касается снижения стоимости, трудоемкости и времени, то с помощью ФСА-метода можно так реорганизовать деятельность, чтобы было достигнуто устойчивое их сокращение. Для этого необходимо сделать следующее:

сократить время, необходимое для выполнения функций;

устранить ненужные функции;

сформировать ранжированный перечень функций по стоимости, трудоемкости или времени;

выбрать функции с низкой стоимостью, трудоемкостью и временем;

организовать совместное использование всех возможных функций;

перераспределить ресурсы, высвободившиеся в результате усовершенствий.

Очевидно, что вышеперечисленные действия улучшают качество бизнес-процессов. Повышение качества бизнес-процессов осуществляется за счет проведения сравнительной оценки и выбора рациональных (по стоимостному или временному критерию) технологий выполнения операций или процедур.

В основе управления, основанного на функциях, лежат несколько аналитических методов, использующих ФСА-информацию. Это - стратегический анализ, стоимостной анализ, временной анализ, анализ трудоемкости, определение целевой стоимости и исчисление стоимости, исходя из жизненного цикла продукта или услуги.

Одним из направлений использования принципов, средств и методов ФСА является планирование бюджета, основанное на функциях. Планирование бюджета использует ФСА-модель для определения объема работ и потребности в ресурсах. Можно выделить два пути использования:

выбор приоритетных направлений деятельности, увязанных со стратегическими целями;

разработка реалистичного бюджета.

ФСА-информация позволяет принимать осознанные и целенаправленные решения о распределении ресурсов, опирающиеся на понимание взаимосвязей функций и стоимостных объектов, стоимостных факторов и объема работ.

Развитием ФCА-метода стал метод функционально-стоимостного управления (ФСУ, Activity-Based Management, ФСУ).

ФСУ - это метод, который включает управление издержками на основе применения более точного отнесения издержек на процессы и продукцию.

Особо обращаем внимание на то, что ФСУ-метод позволяет не только определять издержки, но и управлять ими. Однако, не стоит ставить знак равенства между управлением и контролем. Данные ФСА/ФСУ используются больше для "предсказательного" моделирования, чем для контроля. На сегодняшний день использование данных об издержках для нужд контроля вытесняется более оперативной информацией от TQM-метода, реализованного в виде функций статистического контроля процессов (Statistical Process Control, SPC), или от интегрированных информационных систем, работающих в режиме реального времени.

В процессе построения функционально-стоимостных моделей удалось установить методологическую и технологическую взаимосвязь между IDEF0- и ФСА-моделями.

Связанность методов IDEF0 и ФСА заключается в том, что оба метода рассматривают предприятие, как множество последовательно выполняемых функций, а дуги входов, выходов, управления и механизмов IDEF0-модели соответствуют стоимостным объектам и ресурсам ФСА-модели. На Рис. 1 представлена концептуальная модель ФСА-метода, из которой четко видно, что Ресурсы (Затраты) в ФСА-модели - это входные дуги, дуги управления и механизмов в IDEF0-модели (см. Рис. 2), Продукты (Стоимостные объекты) ФСА-модели - это выходные дуги IDEF0-модели, а Действия ФСА-метода - это Функции в IDEF0-модели

Рис. 1. Концептуальная схема ФСА-метода.

Рис. 2. Функциональный блок и интерфейсные дуги.

На более низком уровне, а именно, уровне функционального блока связь IDEF0- и ФСА-моделей базируется на трех принципах:

1. Функция характеризуется числом, которое представляет собой стоимость или время выполнения этой функции.

2. Стоимость или время функции, которая не имеет декомпозиции, определяется разработчиком системы.

Стоимость или время функции, которая имеет декомпозицию, определяется, как сумма стоимостей (времен) всех подфункций на данном уровне декомпозиции.

Далее приведем различные типы функционально-стоимостных оценок технологий работы предприятия на примере одной российской торговой компании.

В условиях рыночных отношений для эффективной и своевременной реализации товаров через торговые организации, подразделения и представительства торговой компании, необходимо моделирование и оценка технологии ее работы.

В настоящее время моделирование и оценка технологий работы любых торговых компаний, позволяют решить следующий круг задач:

грамотно и наглядно представить технологию работы каждого структурного подразделения компании;

определить документооборот и информационные потоки;

выделить основные, вспомогательные и управляющие функции подразделений торговой компании;

грамотно распределить функции между подразделениями и сотрудниками;

снизить временные и стоимостные затраты, связанные с выполнением бизнес-процессов;

повысить оперативное управление.

В рассматриваемой компании, занимающейся реализацией на внутреннем рынке косметики, парфюмерии и хозяйственной химии, были выделены следующие основные бизнес-процессы:

планирование деятельности;

снабжение компании товаром;

реализация товаров через торговые подразделения компании;

выполнение финансовых операций;

проведение анализа деятельности компании.

В результате функционально-стоимостного моделирования были получены следующие оценки, представленные на Рис. 3-8

 
Rambler's Top100